用基础解系表示下列齐次线性方程组通解x1-2x2 4x3-7x4=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:19:56
用基础解系表示下列齐次线性方程组通解x1-2x2 4x3-7x4=0
求下列齐次线性方程组的通解,并求出基础解系.

X1+X2+X3+X4=0,2X1+3X2+X3+X4=0,4X1+5X2+3X2+3X4=0x2=x3+x4x1=-2x3-2x4x3,x4,任意取值

1,什么是非齐次线性方程?、

1.非齐次线性方程组是指这个方程组的结果向量β是非零向量例如下面的三元方程组:x+y+z=1;2x+y+3z=2;4x-y+3z=3;它的结果向量为β=(1,2,3)'(在这个地方用'表示转置)而齐次

求解齐次线性方程 

x3=0;x1+2x2=x4所以最后的答案应该是【x1,x2,0,x1+2x2】这个不用增广矩阵,直接对系数行列式进行初等行变换,变成上三角矩阵,然后可以直接得出上面的结论

您好,这是线代的一个证明题,设η1,η2,η3为齐次线性方程的一个基础解系,……

设x1α1+x2α2+x3α3=0即(x1+x2)η1+(x1+x2+x3)η2+(x1+x3)η3=0因为η1,η2,η3为齐次线性方程的一个基础解系所以x1+x2=0,x1+x2+x3=0,x1+

用基础解系表示下列线性方程组得全部解:

增广矩阵=1-52-311536-1-12421-6r2-5r1,r3-2r11-52-311028-414-56014-27-28r2-2r3,r3*(1/14)1-52-3110000001-1/

若X1、X2、X3、为齐次线性方程AX=0的一个基础解系,为什么X1+X2,X2-X3,X1+X2+X3也是它的基础解系

证明:(1)因为齐次线性方程组的解的线性组合仍是解所以X1+X2,X2-X3,X1+X2+X3都是AX=0的解.(2)设k1(X1+X2)+k2(X2-X3)+k3(X1+X2+X3)=0则(k1+k

若X1、X2、X3、为齐次线性方程AX=0的一个基础解系,则()是它的基础解系?

这个有点简单,发挥不出来,嘿嘿(C),(D)向量个数不是3个,不是(B)(X1-X3)+(X2-X1)+(X3-X2)=0,所以线性相关,也不对那就只有(A)正确了.

求下列齐次线性方程组的一个基础解系和通解:

系数矩阵A=[1114][2135][1-13-2][3156]行初等变换为[1114][0-11-3][0-22-6][0-22-6]行初等变换为[1114][01-13][0000][0000]行

求下列齐次线性方程组的一个基础解系和通解

系数矩阵A=[1111][2135][1-13-2][3156]行初等变换为[1111][0-113][0-22-3][0-223]行初等变换为[1111][01-1-3][000-9][000-3]

求下列齐次线性方程组的一个基础解系

齐次线性方程组只需考虑系数矩阵,因为增广矩阵的最后一列都是0.解:系数矩阵=1-24-721-213-12-4r2-2r1,r3-3r11-24-705-101505-1017r3-r2,r2*(1/

求下列齐次方程组的一个基础解系,并写出通解

这个题目刚答过系数矩阵A=12-22-112-13-224-711r2-r1,r3-2r112-22-10011-100-3-33r1+2r2,r3+3r21204-30011-100000a1=(-

齐次线性方程a+b+c=0的基础解系是

(1,-1,0)^T,(1,0,-1)^T再问:这个是如何计算得出的?再答:求基础解系的基本方法

求下列齐次线性方程组的基础解系及通解

解:系数矩阵A=112334125658r3-2r1-r3,r2-3r1112301-5-70000r1-r21071001-5-70000方程组的基础解系为:(-7,5,1,0)^T,(-10,7,

求下列齐次线性方程组的基础解系

系数矩阵A=1-23-401-11130-31-43-2r3-r1,r4-r11-23-401-1105-310-202r1+2r2,r3-5r2,r4+2r2101-201-11002-400-24

求下列齐次线性方程组的基础解系:

点击[http://pinyin.cn/1bSzi81b4Oz]查看这张图片.

求下列齐次线性方程组的基础解系?

(2)解: 系数矩阵 A=124-3356-445-233824-19r2-3r1,r3-4r1,r4-3r1124-30-1-650-3-18150212-10r1+2r2,r3-3r2,r4+2r

求下列齐次线性方程组的基础解系,

A=1-8102245-1386-2-->r2-2r1,r3-3r11-8102020-15-5032-24-8r2*(-1/5),r3*(-1/8)1-81020-4310-431r1-2r2,r3

齐次线性方程和非其次线性方程解的问题

(1)a1-a2,a2-a3,a3-a1线性无关吗?(2)确实是两个①a1-a2,a2-a3都是齐次方程的解②a1-a2,a2-a3线性无关【证明】设k1(a1-a2)+k2(a2-a3)=0则,k1

线性代数.求下列齐次线性方程的通解和一个基础解析

先写成行列式的形式1-31-2-51-23-1-112-53501然后进行行变换变成行阶梯型矩阵,就是对角线下面的全是0的那种1-31-20-143-700000000也就是X1-3X2+X3-2X4

齐次线性方程中基础解系的向量个数为什么为n-r

这是基础解系的概念来的基础解系线性无关你解方程初等变换后得到了r个方程那么就有n-r自由变量,取n-r个自由变量使其线性无关,那么就得到了方程组得一个基础解系,所以基础解系的个数就是n-