由平面x=0,y=0,z=1,x y=1,z=x y,所围成的立体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:26:50
由平面x=0,y=0,z=1,x y=1,z=x y,所围成的立体体积
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

设函数z=z(x,y)由方程x^2+y^3-xyz^1=0确定,求z/x,z/y

x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y

怎么计算由四个平面X=0,Y=0,X=1,Y=1所围成的柱体被平面Z=0及2X+3Y+Z=6截得的立体体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

求直线(x+y-z-1=0 x-y+z+1=0)在平面x+y+z=0上的投影直线方程

在直线上取两点(0,0,-1)和(0,1,0),可得直线的方向向量v1=(0,1,1),而平面x+y+z=0的法向量为n1=(1,1,1),所以,由v1、n1确定的平面的法向量为n2=v1×n1=(0

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

平面x-y-2z+3=0与平面x+2y+z=0的夹角为

两平面夹角,也就是法向量的夹角(或其补角)a=(1,-1,-2)b=(1,2,1)cos=(a,b)/|a||b|=-3/6=-1/2=120°两平面夹角为60°,或写成π/3

求直线2x+2y-z=1 3x+8y+z=6与平面2x+2y-z+6=0的夹角

由2x+2y-z=1和3x+8y+z=6联立解得x/2=(y-7/10)/(-1)=(z-9/5)/2,所以直线的方向向量为a=(2,-1,2),而平面的法向量为b=(2,2,-1),它们的夹角的余弦

计算由平面Z=0及旋转抛物面Z=1-X²-Y²所围成的立体的体积

旋转抛物面z=1-x^2-y^2与z=0(xoy平面)交线为一个半径=1的圆,方程为x^2+y^2=1,设该圆在第一象限部分与X轴和Y轴围成区域为D,根据对称性,V=4∫【D】∫(1-x^2-y^2)

利用二重积分求由平面x=0,y=0,z=1,x+y=1及z=1+x+y所围成的立体的体积

我认为应该是5/6啊就是那个积分区间的选择啊我认为应该把曲线投影到xoy平面上啊就是你说的z=0的平面上啊这是我自己的看法啊

求由平面x=0,y=0,x+y=1所围成的柱体被平面z=0及抛物线x^2+y^2=6-z所截的的立体的体积

底:D={(x,y)|0再问:图呐!!!发我邮箱吧ohyes@hk1229.cn再答:答案君去喝茶了,我发你

计算由四面:x=0,y=0,x=1,y=1所围成的柱体被平面z=0及x+y+z=3/2截得的立方体体积

这题很简单.你学过微积分吗?z=3/2-x-y,∫∫(3/2-x-y)dxdy,积分域是0到1,2个都是,故解得答案是1/2.再问:当时老师讲的时候反反复复,最后也没讲清,只是说直线可

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

计算由四个平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体的体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

∫∫∫e^(x+y+z)dv 立体由平面x+y+z=1和三个坐标面围成

见图.\x07对不起!在计算中出现失误!再发一张!()!再问:可答案是e/2-1再答:我不是对了嘛

计算由四个平面x=0 ,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积

由2x+3y+z=6得z=6-2x-3y下式中(0,1)表示积分上限为1,(6-2x-3y)dxdy=∫(0,1)dx∫(0,1)(6-2x-3y)dy=∫(0,1)(6y-2xy-3/2y^2)|(

求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离

/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+

有关三重积分的问题由双曲抛物面z=xy及平面z=0,x+y=1所围成的闭区域此题的x,y,z的范围应该怎么样确定 理由是

所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范