由曲线y=x2与x=y2围成的封闭区域面积?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:19:17
联立曲线与直线得y=x2+2y=3x,解得x=1y=3或x=2y=6设曲线y=x2+2与直线y=3x,x=0,x=2所围成的平面图形的面积为A则A=∫01[(x2+2)-3x]dx+∫12[3x-(x
先将y2=x化成:y=x,联立的:y=x2y=x因为x≥0,所以解得x=0或x=1所以曲线y=x2与y=x所围成的图形的面积S=∫01(x-x2)dx=23x32-13x3|01=13故答案为:13.
由曲线y2=2x与直线y=-x+4解出抛物线和直线的交点为(2,2)及(8,-4).选y作积分变量,将曲线方程写为x=y22及x=4-y.S=∫2-4[(4-y)-y22]dy=(4y-y22-y36
这需要大学里的积分了.首先先求出两曲线交点,用两纵坐标表示积分范围,积分变量为dy,然后用直线(2-y)/2j减去y2/2,对减后的y多项式子积分就可以了
∵曲线y=x2和曲线y=2-x2所的交点为(1,1)和(-1,1)∴曲线y=x2和曲线y=2-x2所围图形的面积为S=2∫10[(2−x2)−x2]=2∫10(2−2x2)=2(2x-23x3)|10
x^2+y^2=|x|+|y||x|^2||y|^2-|x|-|y|=0(|x|-1/2)^2+(|y|-1/2)^2=1/2x>0&y>0:(x-1/2)^2+(y-1/2)^2=1/2,这是一个以
由于图形是对称的,只考虑第一象限内的部分即可.此时绝对值号可以直接去掉x^2 + y^2 = x + y所以x^2 +
由于曲线y=x2及x=y2的交点为0和1,故所围成的面积在(0,1)上积分,于是有:A=∫ 1 0 (x −x2)dx=[23x32−x33]10=13由于绕y
题目不清楚是不是y=12x^2把圆的方程化为y=根号下(8-x^2)这时只包括y正轴区域的半圆和y=12x^2进行积分求出两曲线之下的面积再用半圆面积减之求得围城面积
联立y=x2+2y=3x,解得x1=1,x2=2∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=[13X3+2X−32X2]10+[32X2−13X3−2X]21=1
∵抛物线x2=y及y2=x的图象关于直线y=x对称,∴A(x1,y1),B(x2,y2)两点关于直线y=x对称,故x1=y2,x2=y1,B点坐标为(y1,y2),∵点B在曲线C:x2+y2=4(x≥
令x3-2x=x2,求出两曲线的交点然后进行积分,即可求出面积再问:求了,和答案不一样再答:曲线y=x3-2x与y=x2是有3个交点噢,X=-1,X=0,X=2积分求面积时,需要分段再问:我算的结果和
在坐标系中画出曲线y=|x|与x2+y2=4表示的图形,一个是半径为2的圆,一个是一条折线,围成较小的面积是圆的面积的四分之一,∴面积是14π×22=π故答案为:π
由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2
再问:用的什么方法??是极限?导数?再答:定积分啊再问:我是高中生。。还没有学。你能用导数给我讲一讲吗?因为我们正在学导数。。是极限的思想吗再答:抱歉,该题应该只有用积分来求。。。爱莫能助了,再问:应
当x≥0,y≥0时,(x−12)2+(y−12)2=12,表示的图形占整个图形的14而(x−12)2+(y−12)2=12,表示的图形为一个等腰直角三角形和一个半圆∴S=4(12×1×1+12×π×1
先求交点(2,-2),(8,4)所以面积=2∫(0到2)√(2x)dx+∫(2到8)[√(2x)-(x-4)]dx=(4√2/3)*x^(3/2)(0到2)+[(2√2/3)*x^(3/2)-(x^2
当x,y≥0时,曲线x2+y2=|x|+|y|互为x2+y2=x+y,曲线表示以(12,12)为圆心,以22为半径的圆,在第一象限的部分;当x≥0,y≤0时,曲线x2+y2=|x|+|y|互为x2+y
(1)由于曲线y=x2,x=y2的交点为(0,0),因此以x为积分变量,得图形的面积为:(S=∫10(x−x2)dx=(23x32−13x3)|10=13(2)旋转体的体积:Vx=π∫10((x)2−