由曲面z=0,x=0,y=0,x y z=1围成的闭区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:19:09
由曲面z=0,x=0,y=0,x y z=1围成的闭区域
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

求∫∫∫A(x^2+y^2)dv其中A是由曲线y^2=2z和x=0绕z轴旋转一周而成的曲面与平面z=4

旋转曲面方程为:x²+y²=2z,与平面z=4交线为:x²+y²=8∫∫∫(x²+y²)dv=∫∫∫r²*rdzdrdθ=∫[0→

曲面f(x,y,z)关于平面Ax+By+Cz+D=0对称的曲面方程是什么?

=(x,y,z)与rr=(xx,yy,zz)关于平面Ax+By+Cz+D=0对称,有r=rr+2dn=(xx,yy,zz)+2(A*xx+B*yy+C*zz+D)/sqrt(A^2+B^2+C^2)(

在曲面z=xy上求一点,使该点处曲面的法线垂直于平面x+3y+z+9=0

http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-

微积分二重积分的应用:求立体的体积 求由曲面z=xy,x+y+z=1,z=0所围成立体的体积.

借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们

计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

关于空间曲面F(x,y,z)=0的向量问题……

垂直.把x=x(t),y=y(t),z=z(t)代入F(x,y,z)=0,两边对t求导:(Fx)x'(t)+(Fy)y'(t)+(Fz)z'(t)=0,此即两个向量的数量积,所以两个向量垂直

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

求曲面围成的立体体积x=0,y=0,z=0,x=2,y=3与x+y+z=4

图为表达式,以下用matlab求解,你可以手算积分!>> clear>> syms x y>> V=int(int

由曲面 x^2/4-z^2=1 y=0 围绕x轴旋转一周所围成的曲面方程是: 这类题怎么做呢?

其实这道题也不难所给的那条曲线就是在xz面内的双曲线,要求它绕x轴一周的曲面方程.绕x轴一周,则x坐标是不变的,变的只是把z^2换成y^2+z^2就可以了所以结果是:再问:把z^2换成y^2+z^2是

计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围

积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^

如何利用二重积分计算由下列曲面z=x^2+y^2,y=1,z=0,y=x^2所围成的立体的体积

根据题意分析知,所围成的立体的体积在xy平面上的投影是D:y=1与y=x²围成的区域(自己作图)故所围成的立体的体积=∫∫(x²+y²)dxdy=2∫dx∫(x²

求由曲面x^2=a^2-az,x^2+y^2=a^2,z=0(a>0)所围立体的体积

该立体是在xoy面的上方,由于该立体的对称性,只需求出该立体在第1挂限的那部分图形的体积,然后4倍即得全部立体的体积.草图中画的是该立体在第1挂限的那部分图形,这个图形是由5个面围成的,简要地说,其中

求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离

/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω

带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面

作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,