直角形3O度所对边是斜边的一半吗?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:21:07
直角形3O度所对边是斜边的一半吗?
我想问下勾股定理的勾股数和在直角三角形中如果有一个角是30度那么所对边等于斜边的一半不矛盾么?

不矛盾的,所以的直角三角形都是符合勾股定力的,特殊角度的三角形,就会有特殊的性质的.如果30度直角三角形中勾股数3.4.5.和5.12.13哪里有一半关系?答:勾股数是3、4、5的话,那么它的三个角中

怎样利用三角形全等证明直角三角形30°的角所对的边是斜边的一半

等边三角形ABC,过A作AD垂直BC于D,可证△ABD=△ACD,∠BAD=30°=∠CAD得BD=DC=1/2BD=1/2AB=1/2BC

命题“直角三角形中,30度角所对的直角边等于斜边的一半”的逆命题是?它是什么命题?

30度角所对的直角边等于斜边的一半的三角形是直角三角形,是真命题

证明直角三角形中,30度角所对的直角边等于斜边的一半是真命题

逆命题:直角三角形中,如果一条直角边所对的角为30度,那么这条直角边等于斜边的一半.真命题,证明如下:设三角形为ABC,角C为90度,角A=30度,则角B=60度,连接C斜边的中点D,则CD=1/2A

怎样证明直角三角形中,30度角所对的直角边等于斜边的一半是真命题

作一条辅助线,找到斜边AB的中点D.连接CD.之后你就会了,

证明"直角三角形中30度所对的直角边等于斜边的一半的最多证法

取斜边的中点d,连接dc,过d作ac的垂线段交点是ec点是直角点,角a=30得出e是ac的中点得出三角形ade全等三角形cde---ad=dc得出三角形dcb是等边三角形,所以cb=bd即是斜边的一半

在直角三角形中 30度角所对直角边是斜边的一半 判断逆命题的真假

真在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角CBD=30度所以三角形BC

用分割法证明用分割法构造出等边三角形和等腰三角形来证明 在直角三角形中,30度所对的直角边是斜边的一半

证明:作一个角为30°的直角三角形连接直角上的顶点和斜边上的一点,将其直角分割为30°和60°使得直角三角形分割为一个等边三角形和一个底角为30°的等腰三角形.因为等腰三角形两腰相等,所以边1(分割线

请说出定理"在直角三角形中,30度角所对的直角边是斜边的一半"的逆命题,判断此命题的真假,理由

在一三角形中,一锐角为三十度,其所对的一边为一邻边的一般,则此三角形为直角三角形.在该三角形旁做一个三角形构成正三角形,证明两个三角形全等,有等腰三角形底边上的高垂直与底边得直角

证明直角三角形的一条直角边等于斜边的一半,则这条直角边所对的角等于30度

如:Rt三角形ABC,角C=90°,AB=2BC延长这条直角边BC至D,使得BD=AB,连接AD角BCA=角DCA,BD=AB,AC=AC所以三角形ABC全等于三角形ADC所以AB=AD,又BD=AB

直角三角形30度角所对直角边是斜边的一半 有没有逆定理?【50分】

在直角三角形中,如果一条直角边的长是斜边长度的一半,则该直角边所对的角的度数是30°连接直角顶点与斜边的中点,就可以构成等边三角形,就可以证明出来

怎证明在直角三角形中,30度角所对的直角边是斜边的一半.

很简单呀.给我追加10分就好在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角C

在直角三角形中30度角所对直角边等于斜边的一半,但当直角边分别为3和4时斜边就为5

直角三角形三条边符合勾股定理三边长为345时符合勾股定理,可是此时角度不是30度所以当一个角度是30度时两直角边不是3和4

怎么证明“在直角三角形中,30度角所对的直角边是斜边的一半”的逆命题

过A作AD⊥BC于点D,∵∠B=30°,∴AD=1/2AB=AC,根据垂线段最短可知AD与AC重合,因此∠C=90°

如果30度所对的边是斜边的一半那么三角形是直角三角形?

在三角形中,30º角所对的边是另外一条边的一半,不能说明这个三角形就是直角三角形.

三角函数及其有关概念比如30度所对的边是斜边的一半.最好不要有关于sin30等之类的

.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin