矩形绕y轴旋转一周

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:19:21
矩形绕y轴旋转一周
高等数学题目 空间曲线y=x^2,z=0绕y轴旋转一周所产生的旋转曲面方程

此题并不难:任取曲面上一点,则它的纵坐标不变,到Y轴的距离为原来的横坐标的绝对值.故y=x^2+z^2.另外呢,旋转后的曲线对于xz轴的位置是等价的,故表达式中xz是对称的~也可以得出方程

曲线y-1=z绕Y轴旋转一周所得的曲面方程.

这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2

矩形绕其一边旋转一周形成的几何体叫什么,直角三角形绕其中一条直角边旋转一周形成的几何体叫什么

矩形绕其一边旋转一周形成的几何体叫圆柱直角三角形绕其中一条直角边旋转一周的几何体叫圆锥.

y的平方=x.x的平方=y.图形绕y轴旋转一周的体积

S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx=[2/3(x^(3/2))-1/3(x^3)](0,1)=2/3-1/3=1/3V=π∫(0,1)[x]dx-π∫(0,1)[x^4]

求曲线x^2+z^2=3 y=1绕y轴旋转一周所成的旋转面方程

题目有问题.请更正!x^2+z^2=3y=1是一个圆,y轴垂直它所在平面,旋转了不是曲面

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是.

其实每一个截面是一个环形,这个环形的大圆半径是π-arcsiny,小圆半径是arcsiny环形面积是π(π²-2πarcsiny)积分得到V=∫0~1[π(π²-2πarcsiny

求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积

答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16

Xoy平面上的曲线X^2-4Y^2=9绕Y轴旋转一周所得旋转曲面的方程

设曲线上一点(x0,y0)绕y轴旋转变为(x,y,z),则:x0^2-4y0^2=9.绕y轴旋转,则有:x^2+z^2=x0^2,y=y0,代入曲线方程就得到:x^2+z^2-4y^2=9.此即为所求

曲面x^2-2y^2+z=2被xoy平面所截得的曲线绕y轴旋转一周所成的旋转曲面方程

联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2

曲线x平方+y平方=1(y≥0)绕x轴旋转一周所得的集合体体积为

直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!

求曲线{x=1,y=z}绕y轴旋转一周所得的曲面方程.

x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了

矩形周长为2,将它绕其一边旋转一周,所得圆柱体积最大时的矩形面积为?

设一边为X(即圆柱体的底面圆的半径)而高则为(1-x)然后就可以求出最大面积了告诉你方法自己算出来以后就是别人问你怎么做而不是你问别人怎么做了自力更生丰衣足食

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

矩形绕着一边旋转一周成圆柱,圆柱的侧面展开为矩形,现将长为4cm,宽为3cm矩形绕宽转一周,圆柱的表面积

侧面积=底面周长*高=2*π*3*4=24π底面积=2*π*3*3*2=36π表面积=24π+36π=60π

一个圆绕Y轴旋转一周得到的什么图形?

就一个立体的救生圈,我用画图工具粗略画了个,希望能看懂.

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是

取旋转体的与x轴垂直的圆形薄圆盘,其厚度为dx,则薄圆盘的体积为pi*(y^2)dx,即为pi*(sinx)^2*dx,对其取0到pi的定积分即为旋转体体积.结果为((pi)^2)/2