矩阵A2-3A-5I=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:57:20
注:i应该写成大写的I,但看起来象1,也可以记为E.因为A^2+A-3E=0所以A(A-2E)+3(A-2E)+3E=0即有(A+3E)(A-2E)=-3E.所以A-2E可逆,且(A-2E)^-1=(
[a1+a2,a2,a1+a2-a3]=[a1,a2,a3]KK=10111100-1|K|=-1.所以|[a1+a2,a2,a1+a2-a3]|=|A||K|=2*(-1)=-2.
两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆
显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E
由Ax=β的通解的形式知(1,2,-1)^T是Ax=β的解,故有a1+2a2-a3=β(1,-2,3)^T是Ax=0的基础解系,故有r(A)=3-1=2,a1-2a2+3a3=0所以a3可由a1,a2
A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此
可以的是R(A)+R(A-E)=n提示:A*(A-E)=0所以(A-E)是AX=0的解
设λ是A的特征值,所以Aα=λα.α≠0是对应的特征向量.上式两边左乘上A,得到;(A^2)α=Aλα=λAα=(λ^2)α因为A^2=A,所以(A^2)α=Aα所以(λ^2)α=λα[(λ^2)-λ
(A+I)*(A-3I)=A^2+A-3A-3I=A^2-2A-3I=-7I故而,A+I可逆,逆矩阵为-1/7(A-3I)A-3I可逆,逆矩阵为-1/7(A+I)
一般的结果是,设A的特征值是a1,a2,...,an,则对任意多项式f(x),B=f(A)的特征值是f(a1),f(a2),...,f(an).现在f(x)=3x^2-x^3,所以B的特征值是3(1^
只给了已知条件,求什么呢再问:求A的特征向量特征值。再问:a1a2a3线型无关。可以证明的。再问:谢谢了哈再答:A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(a1,0,a1-a2+a3)=(a
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
|a3-2a1,3a2,a1|第1列加上第3列*2=|a3,3a2,a1|交换第1列和第3列=|a1,3a2,a3|将第2列中的3提取出来=3*|a1,a2,a3|=3*|A|=3*(-2)=-6所以
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
因为A^2-A-2I=0所以(A-2I)(A+I)=0所以r(A-2I)+r(A+I)
A^2-AB=EA(A-B)=EA-B=A^(-1)所以B=A-A^(-1)下略
通解就是所有的解=齐次通解+非齐次的一个特解由a1+2a2-a3=0,齐次的特解为:(1,2,-1)^T(a1,a2,a3的系数)齐次通解为:c(1,2,-1)^T.由向量β=a1+2a2+3a3,得
解:设a是A的特征值则a^3-3a^2+5a-3是A^3-3A^2+5A-3I=0的特征值所以a^3-3a^2+5a-3=0即(a-1)(a^2-2a+3)=0因为A是实对称矩阵,A的特征值都是实数所