矩阵a的平方等于单位矩阵,a e与a-e的秩的和等于n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:48:27
|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.
记得帮你答过了的|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.
等于那个一行一列的矩阵的本身
因为单位举证的是对角线是1,其他是0的矩阵按矩阵乘法乘出来就还是原来的矩阵再问:但是A矩阵本来不是0的乘以0就变成0了啊,就不等于A了啊?再答:不是的 一个矩阵说穿了就是一个二维数组。一个n
A的极小多项式没有重根,必可对角化.如果这个结论不知道的话继续往下看首先你要知道f(A)=0可以得到f(λ)=0,其中λ是A的任何特征值.然后直接看Jordan标准型就行了.另一个问题直接看特征值.
还是单位矩阵!单位矩阵的n次方都是单位矩阵(n∈N+)单位矩阵的逆矩阵还是单位矩阵!
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
R(A)=1.A为非零矩阵.所以R(A)>0.若R(A)=2则detA不为零det(A*A)=det(A)det(A).命题得证!
是的.前提是乘法有意义
A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根
A²-A+I=0-->A-A²=I-->A(I-A)=I-->∴A,I-A可逆;且:A^(-1)=I-A(I-A)^(-1)=A
A=[(-1+√3i)/2]E或者A=[(-1-√3i)/2]E若A=[(-1+√3i)/2]EA逆=[(-1-√3i)/2]EA+A逆=-E若A=[(-1-√3i)/2]EA逆=[(-1+√3i)/
1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A
证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗
是等于零矩阵补充问题了,那我排最后去了等于零矩阵,是在运算有意义的前提下不同阶无法进行矩阵加减运算
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-
若旋转矩阵记为A=|cosa,-sina||sina,cosa|可以证明A^k=|cos(ka),-sin(ka)||sin(ka),cos(ka)|∴cos(ka)=1,sin(ka)=0ka=2n