矩阵a的平方等于单位矩阵,a e与a-e的秩的和等于n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:48:27
矩阵a的平方等于单位矩阵,a e与a-e的秩的和等于n
已知A为奇数阶矩阵,行列式大于0,A×(A的转置)等于单位矩阵,证明单位矩阵减去A不可逆

|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

已知A为奇数阶矩阵,行列式大于0,A×A的转置等于单位矩阵,证明单位矩阵减去A不可逆

记得帮你答过了的|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

单位矩阵乘一个一行一列的矩阵等于什么?

等于那个一行一列的矩阵的本身

为什么单位矩阵与任何矩阵A的乘积还是等于矩阵A?

因为单位举证的是对角线是1,其他是0的矩阵按矩阵乘法乘出来就还是原来的矩阵再问:但是A矩阵本来不是0的乘以0就变成0了啊,就不等于A了啊?再答:不是的 一个矩阵说穿了就是一个二维数组。一个n

矩阵A的平方等于单位阵,则A可以对角化.为何?

A的极小多项式没有重根,必可对角化.如果这个结论不知道的话继续往下看首先你要知道f(A)=0可以得到f(λ)=0,其中λ是A的任何特征值.然后直接看Jordan标准型就行了.另一个问题直接看特征值.

单位矩阵的平方等于什么?

还是单位矩阵!单位矩阵的n次方都是单位矩阵(n∈N+)单位矩阵的逆矩阵还是单位矩阵!

为什么伴随矩阵乘以原矩阵等于原方阵的行列式乘以单位矩阵?

还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵

设A是2阶非零矩阵,A的平方等于O矩阵,求A的秩

R(A)=1.A为非零矩阵.所以R(A)>0.若R(A)=2则detA不为零det(A*A)=det(A)det(A).命题得证!

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

矩阵乘以单位矩阵是否等于单位矩阵乘以矩阵

是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

有四角矩阵A,满足(A+E)的平方等于A,求A,(E为单位阵)

A=[(-1+√3i)/2]E或者A=[(-1-√3i)/2]E若A=[(-1+√3i)/2]EA逆=[(-1-√3i)/2]EA+A逆=-E若A=[(-1-√3i)/2]EA逆=[(-1+√3i)/

矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A

设N阶方阵A满足A的平方等于A,证明A或者是单位矩阵或者是不可逆矩阵

证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗

单位矩阵减去单位矩阵等于什么?

是等于零矩阵补充问题了,那我排最后去了等于零矩阵,是在运算有意义的前提下不同阶无法进行矩阵加减运算

一个矩阵A乘以单位矩阵再乘以一个矩阵B是否等于AB

是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-

一个矩阵是k次方等于单位矩阵,求矩阵旋转的角度,

若旋转矩阵记为A=|cosa,-sina||sina,cosa|可以证明A^k=|cos(ka),-sin(ka)||sin(ka),cos(ka)|∴cos(ka)=1,sin(ka)=0ka=2n