矩阵A逆和矩阵A伴随的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:42:09
矩阵A逆和矩阵A伴随的关系
线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?

A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A

线性代数:A*(伴随矩阵)的作用?

是不是因为伴随就只是求逆的一个桥梁?可以这么说.关于伴随矩阵只需记住2个基本结论:1.AA*=|A|E2.|A*|=|A|^(n-1)

线性代数逆矩阵那一节的定理2:若|A|不等于0,则矩阵A可逆,A^(-1)=(1/|A|)*(A*),A*为矩阵A的伴随

AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没

线性代数.知道矩阵A,求矩阵A的伴随矩阵的逆矩阵.只能一步一步来了么?

有简单算法,A的伴随阵的逆矩阵就是|A|A,下图是推导过程.经济数学团队帮你解答,请及时采纳.

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

A是可逆矩阵,证明A的伴随矩阵的逆等于A的逆的伴随矩阵

由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

矩阵A和他的伴随矩阵的秩有什么关系

A小于n-1伴随矩阵为0等于n-11等于n为n

设三阶方阵A的伴随矩阵A ,且|A|=1/2,求|3A的逆矩阵-2A的伴随矩阵|

|3A^(-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|3A^(-1)-A^(-1)|=|2A^(-1)|=2³(1/|A|)=16再问:仁兄,倒数第三步到倒数第二步怎么来的

设三阶方程A的伴随矩阵A*,且|A|=1/2,求|(3A)逆矩阵-2A*|

笨蛋:等于-16/27解析…|1/3A*1\|A|-2A*|=|2/3A*-2A*|=|-4/3A*|=(-4/3)三次方乘以|A|的平方《A的逆等于A的伴随乘以1/|A|,|A*|=|A|的阶数减一

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

A是三节矩阵|A|=3,A*为A的伴随矩阵,矩阵A第一行和第二行交换得B,则|BA*|=?,A和B有什么关系啊?

互换两行行列式变号|B|=-|A|=-3伴随矩阵的行列式等于矩阵的行列式的n-1次方|A*|=|A|^2=9,故有|BA*|=|B||A*|=-27

请证明:矩阵A的伴随矩阵正定,则矩阵A正定,谢谢!

这个我会叻特征值有一个性质:n阶矩阵A与他的转置矩阵A(T)有相同的特征值.证明如下:因为A的伴随矩阵正定,所以特征值严格大于零.所以A的特征值大于零.所以A正定

矩阵A的伴随矩阵的值与A的特征值之间有什么关系?

因为A*A=IAIEIA*AI=IIAIEI=IAI^n,IA*IIAI=IAI^n,故IA*I=IAI^(n-1),若A能对角化,A的特征值为d1,d2,..,dn.则有IAI=d1d2,..,dn

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-

关于伴随矩阵跟行列式已知矩阵A,和丨A丨怎么求A的伴随矩阵A*的丨A*丨

A丨A*丨=丨A丨E,其中E是单位矩阵.只要求一下A的逆就行了嘛

A为n阶可逆矩阵 对调ij行得B 问A的伴随与B的伴随关系

令P是对换ij行的排列阵那么B=PA由此得到adj(B)=adj(A)adj(P)把adj(P)算出来就行了事实上P=P^{-1},所以adj(P)=det(P)P^{-1}=-P也就是说adj(B)