矩阵E-AA怎么转换

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:03:55
矩阵E-AA怎么转换
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

n维列向量a的长度小于1,证明矩阵A=E-aa^T正定

显然aa^T的特征值是a^Ta和n-1个0,所以A的特征值大于零再问:额,能详细正下么

矩阵 逆矩阵 AA*=A*A=|A|E |A|是行列式,怎么乘一个矩阵 单位矩阵E

|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|

设n阶矩阵A满足条件AA^T=4E,|A|>0,又|2E+A|=0,则必有一个特征值为?

这题目怪怪的由|2E+A|=0可知A必有一个特征值-2前面那些条件又是在干什么?奇怪!

证明:若A是n阶矩阵,且满足AA^T=E,|A|=-1,则|E+A|=0

|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0.-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)

证明:设方阵A满足关系式AA-2A-2E=0,证,A及A+2E均可逆,并求出逆矩阵.

由于A²-2A-2E=A(A-2E)-2E=0所以A(A-2E)=2EA(1/2)(A-2E)=E所以A可逆A逆为(1/2)(A-2E)而由于A²-2A-2E=(A-4E)(A+2

线性代数问题:设A是n阶矩阵,满足AA'=|E|,|A|

AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|

问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A|

AA^T=E,|A|×|A^T|=|A|^2=1,|A|=1或-1.|A|<0,所以|A|=-1.A+E=A+AA^T=A(E+A^T)|A+E|=|A|×|E+A^T|=|A|×|A+E|=-|A+

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

n阶矩阵,为什么AA*=|A|E=O=>r(A)+r(A*)≤n?

因为AA*=|A|E=O所以A*的列向量都是AX=0的解所以A*的列向量可由AX=0的基础解系线性表示所以r(A*)

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.

一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa

设A是n阶矩阵,n是奇数,满足AA^T=E,/A/=1,求/A-E/

A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0

线性代数!设a为n维列向量,且a^Ta=1,令A=E-aa^T,其中E是n阶单位矩阵,

R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E

设A为n阶矩阵,n为奇数,且满足AA^T=E,|A|=1.求|A-E|.

|A-E|=|A-AA^T|=|A(E-A^T)|=|A|*|E-A^T|=|(E-A^T)^T|=|E-A|=(-1)^n|A-E|=-|A-E|所以2|A-E|=0|A-E|=0

A是4阶矩阵,且满足AA^T=2E,|A|

由AA^T=2E得|A|^2=2^4由|A|

线性代数中:方阵行列式A,A*为伴随矩阵,为什么AA*=A*A=|A|E?如何证明

用行列式按行(列)展开定理的结论证明.ai1Ai1+ai2Ai2+...+ainAin=Dai1Aj1+ai2Aj2+...+ainAjn=0(i≠j)

设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/

首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|