矩阵求齐次线性方程自由未知量的确定
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:27:58
线性方程一般不用迭代法解,用矩阵的分解,如高斯法等来解的.有什么问题可以一起讨论!我的Q515765279.
7、(D)举个简单的例子A=[10;00],B=[00;12],AB=0,但BA=[00;10]10、首先题目有明显错误,等号右边的应为长度为2的向量也就是2个0改正过后选(A)乘过后就是一个齐次的线
再问:我想问下r=3为什么3a方+3a等于2a+2额再问:了解了,谢
答案不一样就算是取相同的自由未知量,答案也可以不同
基础解析的k都在外面吧...如果定里面的系数,是应该取1,书上可能是因为化简去分母了所以乘了个2
把系数矩阵经初等行变换化成梯矩阵非零行的从左至右第1个不等于0的数所处的列对应的未知量是约束变量,其余未知量就是自由未知量.如A化成123450067800009非零行的首非零元是1,6,9,处在1,
自由未知量的一般选取方法:先将系数矩阵经初等行变换化成行简化梯矩阵非零行的首非零元所在列对应的是约束未知量其余未知量即为自由未知量由上面的选取方法可知:约束未知量所在列即构成A的列向量组的一个极大无关
对,当做到最后一步,有了自由变量后,赋值时有无穷赋值方式.你说得是常见的赋值方式,图上给出的是根据表达式的特点,能得到整数的基础解系对应的赋值方式.对自由变量赋值,只要赋值时是线性无关的向量就可以,比
有个定理是:齐次线性方程组基础解系所含向量的个数等于未知量的个数减去系数矩阵的秩.所以答案为n-
这是按x1,x2为自由未知量得到的基础解系把x2和x3当作自由未知量也没问题,1-1/4-1/4000000可得基础解系(1,4,0),(1,0,4)再问:可是不是规定把非零行的非零首元作为非自由量么
不一定,只要两个低维向量[例如这里的(01)和(10)]线性无关就行.再问:哦哦,懂了~
11-2030021300004掌握一个原则:自由未知量所在列其余列构成列向量组的一个极大无关组x5不是,故选(A)再问:那么,理论上,自由未知量是不是可以选x1和x2或是x1和x3或是x2和x3或是
有可能,但最终不同的通解是等价的
因为X1,X2对应分量不成比例,所以它们线性无关又因X1,X2是AX=0的解,所以基础解系所含向量的个数3-r(A)>=2.所以r(A)
求特解的过程中,令自由未知量都为零,因为是非齐次线性方程组,这样所有的未知量不可能都是零的,特解一定是非零解.特征向量一定是非零向量,这是由特征向量的定义决定的.
变量与未知量是一回事
系数矩阵=32-2106452396032经初等行变换化成行简化梯矩阵--过程略,12/301/32/900101/300000--重点在这--非零行的首非零元所在列对应的未知量是约束未知量:x1,x
设置线性方程组定义包含两个未知数,并且项中包含的方程数1未知数被称为线性方程.一旦两个联立方程在一起,这两个方程,以形成一组线性方程.有一组方程由几个方程称为方程的.如果方程有两个未知数,数目不详包含