矩阵空间的维数和基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:11:03
A1=1000与A2=0110线性无关,且任一个空间中的向量可由它线性表示所以向量空间的维数是2,基为A1,A2
向量的维数是指向量分量的个数比如(1,2,3,4)'是一个4维向量矩阵的维数是指它的行数与列数,比如123456它的维数是2*3空间的维数是指它的基所含向量的个数比如V={(x1,x2,0,0)'|x
属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再
那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢
定理2.15如果n元齐次线性方程组的系数矩阵A有r(A)=
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
n×n上三角矩阵的对角线及上方共有(n^2+n)/2个元素所以V的维数是(n^2+n)/2.dim(V)=6.注:上述某个位置取1,其余位置取0.这些矩阵构成V的一个基.再问:上三角矩阵的主对角元素一
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
可能平时解这样题时一般不需要说是什么依据,所以我也没去翻课本具体准确解释,按自己的理解说,可能解释的不准确.每行首个非零的元所在列向量构成一组最大无关组,所以第1、2、4列构成一组最大线性无关组,共3
设矩阵为A,如下步骤:1)先求出矩阵A的特征值λ1,λ2,……,λn2)对应于每个特征值解方程组|λE-A|=03)上面每个方程组的解都是对应特征值的一个特征向量空间,解的维数就是特征空间的维数,解得
若m×n阶矩阵A的秩为R(A),则Ax=0的解空间维数为n-R(A).所以本题解空间的维数为6-4=2维.
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
零空间就是齐次线性方程组Ax=0的全部解,基就是基础解系,维数是n-r(A),n是未知元的个数,r是A的秩.再问:好像是额!!。。。对了,再问一下矩阵行空间正交补怎么算?我觉得我的的算法有问题,算出的
将此向量a,扩充到V的一组正交基,则另外n-1个向量构成的子空间就是它的正交补空间,因而它的维数为n-1.
(1)求矩阵A的秩r(A)A的列向量成比例,有a1≠0∴r(A)=1⑵设b′a=k﹙常数﹚有A²=kAA^10=k^9A⑶齐次线性方程组AX=0的通解为向量﹛b1,b2,……,bn﹜在R^n