矩阵空间的维数和基

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:11:03
矩阵空间的维数和基
求向量空间的维数与基a b(一个矩阵)其中a,b属于数域Pb 0求此向量空间的维数与基

A1=1000与A2=0110线性无关,且任一个空间中的向量可由它线性表示所以向量空间的维数是2,基为A1,A2

向量的维数和矩阵的维数和空间的维数的区别是什么?

向量的维数是指向量分量的个数比如(1,2,3,4)'是一个4维向量矩阵的维数是指它的行数与列数,比如123456它的维数是2*3空间的维数是指它的基所含向量的个数比如V={(x1,x2,0,0)'|x

n阶矩阵的线性变换线性变换t(A)=A',A为n阶方阵,那么t的特征值怎么算呢?属于特征值1的特征子空间的维数和一组基怎

属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一

实数域R上全体二阶矩阵构成的线性空间的维数,并写出一组基?

很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不

可交换矩阵的交换矩阵所组成的线性空间的维数和基怎么求?已知可交换矩阵.

首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再

数域p上n级下三角矩阵关于矩阵加法和数乘构成的线性空间的维数是多少?

那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢

线性代数矩阵,AX=0的解空间的维数为n-r,这是哪个定理?

定理2.15如果n元齐次线性方程组的系数矩阵A有r(A)=

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

若V表示由一切3×3上三角矩阵按照矩阵加法和数乘运算构成的线性空间,则V的维数是多少?

n×n上三角矩阵的对角线及上方共有(n^2+n)/2个元素所以V的维数是(n^2+n)/2.dim(V)=6.注:上述某个位置取1,其余位置取0.这些矩阵构成V的一个基.再问:上三角矩阵的主对角元素一

实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法是否构成R上的线性空间,如果是,求它的维数和基

3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j

线性代数 空间向量 基 和维数

可能平时解这样题时一般不需要说是什么依据,所以我也没去翻课本具体准确解释,按自己的理解说,可能解释的不准确.每行首个非零的元所在列向量构成一组最大无关组,所以第1、2、4列构成一组最大线性无关组,共3

任意给一个矩阵,特征向量空间的维数和基如何确定?

设矩阵为A,如下步骤:1)先求出矩阵A的特征值λ1,λ2,……,λn2)对应于每个特征值解方程组|λE-A|=03)上面每个方程组的解都是对应特征值的一个特征向量空间,解的维数就是特征空间的维数,解得

设A为86的矩阵,已知它的秩为4,则以A为系数矩阵的齐次线性方程组的解空间维数为?

若m×n阶矩阵A的秩为R(A),则Ax=0的解空间维数为n-R(A).所以本题解空间的维数为6-4=2维.

n阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间,其维数等于____,其一组基为______?

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

一个矩阵的零空间是什么?它的基和维数怎么求?

零空间就是齐次线性方程组Ax=0的全部解,基就是基础解系,维数是n-r(A),n是未知元的个数,r是A的秩.再问:好像是额!!。。。对了,再问一下矩阵行空间正交补怎么算?我觉得我的的算法有问题,算出的

证明矩阵理论正交补空间的维数

将此向量a,扩充到V的一组正交基,则另外n-1个向量构成的子空间就是它的正交补空间,因而它的维数为n-1.

高等代数的矩阵解空间和特征值问题

(1)求矩阵A的秩r(A)A的列向量成比例,有a1≠0∴r(A)=1⑵设b′a=k﹙常数﹚有A²=kAA^10=k^9A⑶齐次线性方程组AX=0的通解为向量﹛b1,b2,……,bn﹜在R^n