矩阵论教材证明设 A, B 均为 n 阶正规矩阵,并且 AB = BA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:48:54
矩阵论教材证明设 A, B 均为 n 阶正规矩阵,并且 AB = BA
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A

证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可

设A、B均为n阶可逆矩阵,证明(A*)*= |A|^n-2·A

因为A、B均为n阶可逆矩阵所以(A*)*=(|A|A^(-1))*=|A|^n-2(A^(-1))*=|A|^n-1(A*)^(-1)=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

设A,B均为n阶矩阵,证明:r(AB-BA+A)=n

我想了好久没作出来!后来发现题目有误!比如取A=B且R(A)

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

设A,B均为n阶正定矩阵,证明kA+lB也是正定矩阵,其中k,l为正数

首先需要说明kA+lB是对称的,这是因为(kA+lB)'=kA'+lB'=kA+lB,然后对于任意的x不等于0,有x'(kA+lB)x=kx'Ax+lx'Bx>0(因为A,B均正定),得证.

设A,B为n阶矩阵且A+B=E,证明:AB=BA

AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA

设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*

因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.(AB)*=(AB)^(-1)IABI=B^(-1)A^(-1)IABI=B^(-1)IBIA

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,

容易验证:(A^-1)(A+B)(B^-1)=B^-1+A^-1.**由于可逆阵的逆阵可逆,可逆阵的乘积可逆,由上式知:A^-1+B^-1可逆.再由性质:(AB)^-1=(B^-1)(A^-1)由(*

设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.

考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B均为n阶实对称矩阵,证明:A与B相似

因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.

设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.

由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵