短期成本函数:STC=0.04Q∧2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:00:20
STC'=0.12Q^2-1.6Q+10令STC'=0求得Q=?STC极值点把极值点Q=?带入比较求的SAC取最小值时Q的取值.
AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)=5/Q当Q=0.8/(2*0.04)=
1、可变成本:0.04Q^3-0.8Q^2+10Q不变成本:52、TVC(Q)=0.04Q^3-0.8Q^2+10QAVC(Q)=TVC(Q)/Q=0.04Q^2-0.8Q+10AFC(Q)=5/QM
我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你什么问题都依赖别人.另外,我建议你今后问
AVC=0.1Q²-2Q+15短期供给函数是MC在AVC以上的部分,所以,P=0.3Q²-4Q+15(P>=5)
(1)完全竞争短期均衡时有MC=P,即MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=STC-10(也就是去掉常数项,常数项是固定
stc=q^3-6q^2+30q+40第一问,P=66,利润π=P*q-stc也就是π=66q-q^3+6q^2-30q-40求一阶导数,即可得max(π)算下来到最后q^2-4q-12=0显然q=6
1.完全竞争厂商的短期供给曲线就是边际成本曲线高出平均可变成本最低点的部分。由短期成本函数STC=Q3-10Q2+100Q+1000知:SVC=Q2-10Q+100,对该式求导得出SVC最小时的Q为5
这题是求平均可变成本与短期边际成本的关系,短期边际成本SMC(Q)与短期总成本STC(Q)的关系,平均可变成本AVC(Q)与总可变成本TVC(Q)的关系.短期边际成本穿过平均可变成本的最低点,因此解出
对短期成本函数求一阶导数,可以得出MC=0.3Q2-4Q+15(此处我认为您的结果有误,因为Q^3的系数是0.1)再将上述方程反解出Q=...的形式,即为短期供给函数.
(1)smc=0.3Q^2-4Q+15P=MR=MC得Q=(最重要的是理解P=MR=MC)(2)smc=0.3Q^2-4Q+15AVC=0.1Q3-2Q2+15Q令SMC=AVC(3)短期供给函数为S
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
可变成本为TVC=0.04Q3-0.8Q2+10Q不变成本为TFC=5平均可变成本AVC=TVC/Q=0.04Q2-0.8Q+10=0.04(Q-10)2+6则当Q=10时取最小的平均可变成本MinA
1、要求AVC最小时的产量,因为价格不变,所以是求SVC最小时的产量,因为SFC不变所以是求STC最小时的产量通过对STC(Q)求导,并令STC’(Q)=3Q²-20Q+27=0求得Q=±1
先列出平均成本函数,对其求一阶导数,得两解,分别代入二阶导数,若二阶值大于零,为极小值点.若两解代入二阶导均大于零.则将两解分别代入原函数,得最小值,及得题解.
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
AVC=STC/Q=0.04Q^2-0.08Q+10是平均可变成本函数,呈现U型,有一个最小值.数学问题求极值,求导数令其等于零:0.08Q-0.08=0,得Q=1.
(1)可变成本部分5Q3-4Q2+3Q不变成本部分50(2)TVC(Q)=5Q3-4Q2+3QAC(Q)=STC(Q)/Q=5Q2-4Q+3+50/QAVC(Q)=可变成本/Q=5Q2-4Q+3AFC
MC=STC'=3Q^2-9Q+30利润最大化条件MR=P=60=MC3Q^2-9Q+30=60Q^2-3Q-10=0Q=5利润π=PQ-STC=5*60-(125-4.5*25+150+100)=1