确定正数,使曲面xyz=与x^2 a^2 y^2 b^2 z^2 c^2=1相切

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:11:58
确定正数,使曲面xyz=与x^2 a^2 y^2 b^2 z^2 c^2=1相切
已知正数xyz,满足x+y+z=xyz 已知正数x,y,z满足x+y+z=xyz,且不等式1/x+y+1/y+z+1/z

配凑柯西不等式1/(x+y)+1/(y+z)+1/(z+x)≤[1/2(xy)^0.5]+[1/2(yz)^0.5]+[1/2(zx)^0.5]=(1/2){1*[z/(x+y+z)]^0.5+1*[

证明:曲面xyz=a的三次方(a>o)上任一点的切平面与三个坐标面所围成的体积为一定数.

设曲面上任意一点坐标(x0,y0,z0)满足x0*y0*z0=a^3该点处法向量=(y0*z0,x0*z0,x0*y0)切平面方程为:y0*z0*(x-x0)+x0*z0*(y-y0)+x0*y0*(

设xyz均为正数,且3的x次方=4的y次方=6的z次方,

设xyz均为正数,且3的x次方=4的y次方=6的z次方,取对数得xlg3=ylg4=zlg6,(1)1/z-1/x=lg6/(ylg4)-lg3/(ylg4)=(lg6-lg3)/(2ylg2)=1/

函数z=z(x,y)由方程e^z-xyz=0确定,求偏导时不同方法不同答案

此题两种方法求出的偏导数是相等的,估计题主算错了.方法如下:1:用算出的一阶偏导数求二阶混合偏导数如下:(计算中注意e^z=xyz)2:用题中的方法二计算: 所以两种方法计算结果相同

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

1.设z=z(x,y)是由方程式e的z次方=xyz所含的隐函数,求dz 2.计算出曲面z=2-x^-y^2与xoy坐标面

1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d

已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2

柯西【x^2/(y+z)+y^2/(x+z)+z^2/(x+y)】*(y+z+x+z+x+y)≥(x+y+z)^2即x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥(x+y+z)/2=(3

x+y+z=1,x,y,z都是正数,求xy+yz+xz-3xyz的最大值和最小值

这是道竞赛题我在电脑前没有笔,所以无法给出正确结果,但可以给你思路设f(t)=(t-x)(t-y)(t-z)则f(t)=t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz代入x+y+z=1,

求导e^z-xyz=0确定二元函数:z=f(x,y)

e^z-xyz=0e^z·∂z/∂x-(yz+xy·∂z/∂x)=0∂z/∂x·(e^z-xy)=yz∂z/W

由方程xyz=e^x确定的隐函数z=z(x,y)的全微分dz

代入:2z-2z+lnz=0--->z=1,所以z'(y)=-z/y从而dz=z'(x)dx+z'(y)dy=(e^x-yz)/(xy)

求曲面xyz=a³(a>0)的切平面与三个坐标面所围成的四面体的体积

曲面xyz=a³在(x0,y0,z0)的法方向是{y0z0,z0x0,x0y0}.切平面是:y0z0(x-x0)+z0x0(y-y0)+x0y0(z-z0)=0.它在三个坐标轴上的截距分别是

由x+y+z=根号下xyz,确定z是x,y的函数,求dz

d(x+y+z)=d√(x+y+z)dx+dy+dz=1/2√(xyz)d(xyz)dx+dy+dz=1/2√(xyz)(yzdx+xzdy+xydz)(1-xy/(2√xyz))dz=[yz/(2√

求曲面xyz=1和曲面x=y^2交线在点(1,1,1)处的切线和法平面方程

交线y=tx=t^2z=t^(-3)x'(t0)=2,y'(t0)=1,z'(t0)=-3切线方程为(x-1)/2=(y-1)/1=(z-1)/(-3)法平面方程(x-1)*2+(y-1)*1+(z-

已知xyz都是正数,1/x+9/y=1,求x+2y的最小值

x+2y=1×(x+2y)=(1/x+9/y)(x+2y)=1+9x/y+2y/x+18=19+9x/y+2y/x>=19+2√(9x/y×2y/x)=19+6√2最小值为19+6√2

求曲面 xyz=1的切平面 使其与x+y+z=5 平行

设切点为(x0,y0,z0)F(x,y,z)=xyz-1Fx=yz,Fy=xz,Fz=xyn=(y0z0,x0z0,x0y0)因为切平面和平面x+y+z=5平行所以y0z0/1=x0z0/1=x0y0

求曲面xyz=1上找一点使其到原点(0,0,0)的距离最短

用均值不等式,x^2+y^2+z^2>=3[x^2*y^2*z^2]^(1/3)=3所以最小值是根号3当|x|=|y|=|z|=1时取得

设x,y,z均为正数且3^x=4^y=6^z;1.试求xyz之间的关系2.求使2x=py成立且与p最近的正整数(即求与p

1、x、y、x三者之间的关系题目已给:3^x=4^y=6^z,或表示为:x/y=ln4/ln3,x/z=ln6/ln3;2、若2x=py,则p=2(x/y)=2*(ln4)/ln3≈2*(1.3863