lgan=2n 1求an是等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:37:45
lgan=2n 1求an是等比数列
设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数

n≥2时,Sn=4a(n-1)+2,与S(n+1)=4an+2相减,得:a(n+1)=4an-4a(n-1),即:a(n+1)-2an=2[an-a(n-1)],则:bn=2b(n-1),其中n≥2.

设数列{an}的前n项和Sn=2an-2n(1)证明数列{an+1-2an}是等差数列(2)证明数列{an+2}是等比数

Sn=2an-2n则Sn+1=2an+1-2(n+1)an+1=Sn+1-Sn=2an+1-2an-2则an+1-2an=2所以{an+1-2an}是等差数列(2)an+1-2an=2则an+1+2=

已知数列{an}满足a1=3,an+1=3an+2/an+2 n属于N,记bn=an-2/an+1,求证{bn}是等比数

(n+1)=[a(n+1)-2]/[a(n+1)+1]=[(3an+2)/(an+2)-2]/[(3an+2)/(an+2)+1]=an-2/4an+4bn=an-2/an+1故bn+1/bn=1/4

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列

lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列

已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数

a(n+1)=(1+q)an-qa(n-1)a(n+1)=an+qan-qa(n-1)a(n+1)-an=qan-qa(n-1)a(n+1)-an=q[an-a(n-1)][a(n+1)-an]/[a

设{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数

(1/2)^a1+(1/2)^a2+(1/2)a^3=21/8(1/2)^a1*(1/2)^a2*(1/2)^a3=1/8(1/2)^(a1+a2+a3)=1/8a2=1a1=1或a1=4a3=4或1

a1=3,an=2an-1+3 证{an+3}等比,并求an

(1)an=2a+3,∴an+3=2[a+3],∴数列{an+3}是等比数列.(2)an+3=(a1+3)*2^(n-1),an=(a1+3)*2^(n-1)-3=(6)*2^(n-1)-3.再问:2

已知数列{An}满足lgAn=3n+5,证明An是等比数列.

lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列 lgan=3n+5

a(n+1)/an=10∧[(3n+8)-(3n+5)]=10∧3再问:那为什么a(n-1)=10^(3n+2)回答这个之后马上好评求解!!再问:或者a(n+1)=10^(3n+8)再问:懂了!!

数列{An},其中An=8(1/2)^(n-1),若Mn=lgA1+lgA2+……+lgAn,求Mn最大值和此时n的值

An=8(1/2)^(n-1)=(1/2)^(n-4)=2^(4-n)∴lgAn=(4-n)lg2∴Mn=[4n-(1+2+3+……+n)]lg2整理得Mn=(7n-n^2)/2*lg2=[-(n^2

已知{an}是各项为正数的等比数列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一个等比中项,求数列{an

等比数列,则:a1a3=(a2)²,a3a5=(a4)²,则:a1a3+2a2a4+a3a5=(a2)²+2a2a4+(a4)²=(a2+a4)²=1

已知数列{an}的前n项和Sn,满足log2(Sn+1)=n,1求数列的通项公式 2求证{an}是等比数

简单的要死,你成绩在学校排中等吗?log2(Sn+1)=n,所以Sn+1=2^n,Sn=2^n-1,an=Sn-S(n-1)=(2^n-1)-(2^(n-1)-1)=2^(n-1)a(n+1)/an=

{lgan}是等比数列,则{an}是什么数列?

是等比数列.再问:怎么做?要过程再答:由题可设lgan+1-lgan=d则lg(an+1/an)=d(这是对数常用公式)所以(an+1)/an=10^d又因为d是常数,所以10^d是常数。而且an不等

NO.1An为等比递增数列,A5*A7=32.A3+A9=18.求A10NO.2有四个数,前三个数成等差,后三个数成等比

第一题:等比数列有个重要性质若m+n=p+q=2t则aman=apaq=at平方(m,n,p,q,t都是下标)因为A5*A7=32.A3+A9=18所以A5*A7=A3*A9=32=A6平方解得A6=

数列{an}首项a1=1,an=2(an-1)+1(n?N*,n大于等于2),令bn=(an)+1,求证{bn}是等比数

(n+1)=a(n+1)+1=[2an+1]+1=2an+2=2(an+1)=2bn,所以{bn}是公比为2的等比数列.b1=a1+1=2,所以bn=b1*q^(n-1)=2*2^(n-1)=2^n.

已知{an}是由正实数构成的数列,a1=3,且满足lg(an+1)=lgan+lgc,其中c为正常数.

因为lga(n+1)=lgan+lgc所以lga(n+1)-lgan=lgc所以lg[a(n+1)/an]=lgc所以a(n+1)/an=c所以{an}为等比数列若c=1则Sn=3n若c1则Sn=3(

已知数列{lgan}是首项为3,公差为2的等差数列,求证:{an}是等比数列.

{lgan}是首项为3公差为2lgan=3+2(n-1)=2n+1an=10^(2n+1)a1=10^3=1000q=10所以an为首项为1000公比为10的等比数列

设正数数列{an}为一等比数列,且a2=4,a4=16,求lim(lgan+1+lgan+2+...+lga2n)/n^

因为an>0,a2=4,a4=16所以q=2,a1=2所以lim(lgan+1+lgan+2+...+lga2n)/(n^2)=lim(n/2*lg(an+1*a2n))/(n^2)=lim(lg(a