lim(un+1/un)大于1则un求和发散.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:18:22
(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散
发散再问:我知道答案,你能不能帮我证明一下啊?再答:这个是书上的定理啊。再问:对呀,书上有这个定理,但有一题让我们证明,书上证了N是∑(n=N→∞)Un=(n-N)Un当lim(n→∞)Un=0时收敛
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了
如果你知道通项公式Un=(√5/5)*((1/2+√5/2)^n-(1/2-√5/2)^n)是不是就已经解决了?如果不用通项公式利用lim(Un+1/Un)=lim(Un+2/Un+1)=lim((U
∑(Un-1)既然收敛,就说明其Un-1必是无穷小量,从而当n趋向于无穷大时有Un-1趋向于0,从而limUn=1(n趋向于无穷大)
证明的思路很明显与比较法是一样的,但题目有错误啊.级数收敛时,Un的极限是0,lnUn/lnn的极限存在的话,应该是一个负数啊再问:不好意思哦.把InUn/Inn改成ln(1/Un)/lnn再答:1、
级数肯定是发散,可以证明级数是正项级数或者是负项级数.再问:嗯,我也觉得是肯定发散了,这么说是他自己题有问题
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n
当n→∞时,Un=Un+1=x令Un+1=3Un/4+4/Un中n→∞得到x=x3/4+4/x所以x^=16又因为U1>4所以每个Un都是正数所以极限也是正数x=4
若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u
不一定,有时候会等于1.
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u
级数(un-un-1)收敛于0
-1/2,用收敛的必要条件.经济数学团队帮你解答.请及时评价.再问:谢谢还有道题目概念都不理解--再答:请先采纳,再追问。再问:少了阶乘符号了吧?再答:是抄漏了,不好意思。
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0