lim(xy-0,0)x^2y x^3 y^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:03:47
令:x=rcosθ,y=rsinθlim[(x,y)->(0,0)]((x^3)+(x^2)y+x(y^2)+(y^3))/((x^2)-xy+(y^2))=lim[(x,y)->(0,0)](r^3
lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0
如果是1/xy次方=lim{(1+sin(xy))^(1/sin(xy))}^sin(xy)/xy=e.如果是xy次方,就是1再问:我开始也认为很简单嘛=1,但老师给的答案是e再答:如果是xy次方,就
当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;当沿直线y=x趋于(00)时,极限为limx^2/2x=0.故极限不存在.再问:刚问阁下是干什么地,这么强再答:
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
lim(x,y)→(0,0)[1-cos(xy)]/xy^2=lim(x,y)→(0,0)(x²y²/2)/xy^2..=lim(x,y)→(0,0)x=0再问:[1-cos(xy
(x,y)->(0,0)=>u=xy->0lim(x,y)->(0,0)xy/[√(xy+1)-1]=limu->0u/[√(u+1)-1]=limu->0u*[√(u+1)+1]/u=limu->0
因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)
limx→0y→02xy/根号下1+xy然后-1=limx→0y→02xy[√(1+xy)+1]/[√(1+xy)-1][√(1+xy)+1]=limx→0y→02xy[√(1+xy)+1]/xy=l
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x
令u=xy,lim_{u->0){sin(u)/u}=1.
=lim(x,y)-(0,0)[(xy+9)-9]/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)(xy)/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)1/[
令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在
令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2
lim[2-√(xy+4)]/xy=lim[2-√(xy+4)][2+√(xy+4)]/{xy[2+√(xy+4)]}=lim(x-->0,y---->0)(-xy)/[xy[2+√(xy+4)]]=
x^2+(y^2)/2=1,x^2+[(1/√2)y]^2=1,设x=cosA,y=√2sinA,因x>0,y>0,不妨设0<A<π/2,x√(1+y^2)=cosA√[1+2(sinA)^2]=√{
第一题极限等于1第二题极限为1/2第三题为1第一题方法x->0y->1直接代入即可第二题方法1-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2后等于1/2和x,y没关系
lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y
可以设y=x;y=2x分别代入求极限