级数n开n次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:48:32
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
y=n^(1/n)lny=(lnn)/n∞/∞,用洛必达法则分子求导=1/n分母求导=1所以lim(n趋于∞)lny=lim(趋于∞)1/n=0所以y极限=e^0=1
找收敛域,让后除以前一项,看看就可以
是不是x再问:��þ�����Ƿ����ŵġ����ðɣ���������ʦ��ʦ�þ���������n������š���������ȷ����1
实在不懂这题要你证明他们具有相同的敛散性为什么你只想知道1/n那个诶~首先,当n趋近于正无穷的时候1/√n(n+1)(n+2)就约等于1/√n*n*n就等于1/n的2分之3次方.然后两者相除等于1即得
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
发散啊,不满足级数收敛的必要条件.
用后一项比前一项.(n/(n+1))^n---->1/e故收敛.
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域
因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.
当n≥10时,1/n^n≤1/10^n,而级数∑1/10^n收敛,所以级数∑1/n^n收敛再问:为什么令n≥10?再答:这个没什么特别原因,令n≥2或3都可以,只要保证后一个级数收敛就行。
收敛.用比值判别法.
记通项是an,当x不为0时,显然|a(n+1)/an|=|(n+1)x/3|,只要n+1>3/|x|,则有|a(n+1)/an|>1,|an|递增趋于无穷,级数发散.因此原级数只在x=0收敛.
此级数绝对收敛对于lnn/(n*p)这类级数,你可以记住如下结论:p>1,级数绝对收敛这里可以利用函数变化速度快慢这一结论:指数函数>幂函数>对数函数,这个不管是增大的速度还是减小的速度,都成立如果你
令a(n)=(n^n)/(n!)^2,则a(n+1)=[(n+1)^(n+1)]/[(n+1)!]^2;lim(n→+∞)a(n+1)/a(n)=lim(n→+∞){(n+1)(n+1)...(n+1
比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/