ln(1 ρ∧2)积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:19:18
∫[ln(1+x)/(1+x²)]dx=∫[ln(1+tanz)/(1+tan²z)]*sec²zdz(令x=tanz)=∫ln(1+sinz/cosz)dz=∫ln[(
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
首先你给的等式是不对的,等式左边应该有个极限符号,当n趋向于无穷大的时候,你的等式才成立.然后再看等式,你可以将等式反过来看,从定积分的几何意义出发,该定积分的几何意义是以y=ln(1+x)为曲边、y
∫tan(x)dx=∫sin(x)/cos(x)dx=-∫1/cos(x)d(cosx)=-ln|cosx||(0,1/4π)=ln1-ln√2/2=-ln√2/2∫(cos(x)ln(x)-sin(
原式=xln(1+x)-∫xd[ln(1+x)]dx=xln(1+x)-∫2[x/(1+x)]dx=xln(1+x)-2∫[1-1/(1+x)]dx=xln(1+x)-2x+2arctanx+C
先用对数函数的性质把原式变为:=∫ln(1+x)dx-2∫ln(2-x)dx而lnx的积分为ln(x)*x-x+C这样上面的不定积分就可以求解了吧具体的步骤我就不写了晕,怎么不写清楚?利用分部积分法.
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
∫ln[x+(1+x^2)^(1/2)]dx=xln[x+(1+x^2)^(1/2)]-∫[x(1+x/(1+x^2)^(1/2)]/[x+(1+x^2)^(1/2)]dx=xln[x+(1+x^2)
∫ln(x^2+1)dx=ln(x^2+1)x-∫xd(ln(x^2+1))=ln(x^2+1)x-∫x*2x/(x^2+1)dx=ln(x^2+1)x-∫2-2/(x^2+1)dx=ln(x^2+1
原式=∫ln(1-x)d(1-x)=(1-x)ln(1-x)-∫(1-x)dln(1-x)=(1-x)ln(1-x)-∫(1-x)*[-1/(1-x)]dx=(1-x)ln(1-x)+∫dx=(1-x
分部积分,原式=xln{1+[(1+x)/x]^1/2}-∫(-1/2)sqrt(x/(1+x))/x(1+sqrt((1+x)/x)dx考虑后面的部分,令u=sqrt((1+x)/x),x=1/(u
令x=tgt,原式=∫ln(tgt+1)dt,再令t=pi/4-s,tgt+1=2/(tgs+1),所以∫ln(tgt+1)=∫ln2-ln(tgt+1),现在可以解了吧?
运用分部积分法,如下2张图:
原式=∫ln(x+x^3)dx=xln(x+x^3)-∫xdln(x+x^3)=xln(x+x^3)-∫x*1/(x+x^3)*(1+3x^2)dx=xln(x+x^3)-∫(1+3x^2)/(1+x
用分步积分法∫[-1,1]ln[x+√(1+x^2)]dx=xln[x+√(1+x^2)][-1,1]-∫[-1,1]xdln[x+√(1+x^2)]=ln(√2+1)-ln(√2-1)-∫[-1,1
这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2
平方在哪里再问:在后面的x上再答:
如果是∫ln(1-x)/xdx∫ln(1-x)/xdx=∫ln(1-x)d(lnx)=-∫ln(1-x)d(ln(-x))=∫ln(1-x)d(ln(1-x))=(1/2)(ln(1-x))^2+C再