lnx(1 x) x的等价无穷小的证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:26:32
在x=0处泰勒展开,e^x=1+x+x^2/2!+x^3/3!.再问:这个等价无穷小,是不是可以直接用。不需要证明。再答:用的时候看情况,如果x为无穷小量,x^2以后的所有项为高阶无穷小量。不用证明
因为e^x在x趋近于0时,等价无穷小是x+1e的-x次方=1/(e的x次方)所以当X趋近0时,1-(e的-x次方)的等价无穷小是1-1/(x+1)=x/(x+1)
利用ln(1+x)~x,得到ln(1+x)^2x^2+2x再问:不太明白,请问具体过程是什么再问:不太明白,请问具体过程是什么再问:不太明白,请问具体过程是什么
x-->0则√(1+x)-√(1-x)=2x/【√(1+x)+√(1-x)】=x再问:我想知道=2x/【√(1+x)+√(1-x)】=x这一步怎么直接得到x的?再答:lim【√(1+x)+√(1-x)
x趋近0时,limln(1+x)/x=1,所以就等价啊.
把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2
limln(1+x)/x(x趋于0)=lim1/1+x(运用洛必达法则)=1所以ln(1+x)和x是等价无穷小
a^x=e^(xlna)e^x-1~xe^(xlna)-1~xlna
lim(x→0)ln(1+x)/x=lim(x→0)ln(1+x)^(1/x)=ln[lim(x→0)(1+x)^(1/x)]由两个重要极限知:lim(x→0)(1+x)^(1/x)=e,所以原式=l
x-1是趋向0的所以将x-1进行无穷小替换再答:再答:如图所示,懂了吗?若芢有不明白请追问哦再答:不知我表达清楚了没有,有疑问要追问的哦~望采纳最快且最佳回答~^_^
有个等价无穷小是ln(1+x)~x所以ln(1+x^n)~x^n
sin(x^2)等价无穷小为x^2(sinx)^2等价无穷小为x^2
你不会时用1/x来代替sin1/x吧,那样就错了!因为x替代sinx.必须是x趋向0而本题中,x趋向0时,1/x是无穷大.所以本题这样考虑:sinx用x代替,化为:x^2*(sin1/x)/x=x*(
是-x,sin(-x),tan(-x)之类的因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1又ln(1-x)=ln[1+(-x)]所以得如上结论
由泰勒展开式sinx=x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+...所以x-sinx=x^3/3!-x^5/5!+...(-1)^k*x^(2k-
当x趋于0时,sinx也趋于0,这种情况下sinx和x都是无穷小量,(注意0是无穷小量,但是无穷小量不是0),(sinx)/x是两个无穷小量的商,当两个无穷小量的商的极限为1时,称这两个无穷小量为等价
错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si
当n是正整数时,有乘法公式:a^n-1^n=(a-1)([a^(n-1)+a^(n-2)+…+a+1).
x→0ln(1+x^2)~x^2再问:呜呜,,能不能写详细点,过程呢?拜托了,,再答:lim(x→0)ln(1+x^2)/x^2(0/0,用洛必达法则)=lim(x→0)[2x/(1+x^2)]/(2