线性方程组Ax=0只有零解是矩阵AA为正定矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:54:50
证明:设k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ=0则k1α1+k2α2+⋯+kmαm+(k1+k2+...+km+k)β=0.等式两边左乘A,由已知Aα
由已知β1-β2是AX=0的非零解而导出组AX=0的基础解系只有一个向量所以β1-β2是AX=0的基础解系所以方程组的通解为β1+k(β1-β2).
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
必须无解.因为x的秩<b的秩.
不对,也可能无解但当有解时解唯一所以第4个选项正确
是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)
C2a1+b2是AX=b的解b1+b2是AX=2b的解a1+a2是AX=0的解b1-b2是AX=0的解
AX=0相当于AX=B中的B那列全部为零.定理中X=detB/detA.(下标我打不出来)当AX=B有唯一解时,AX=0即B的值全为零的时候.detB当然为零.就只有零解.
有唯一解或者无解.因为r(A|B)>=r(A)=n;
注:由于题目中出现A^k,故A一定是方阵因为AX=0只有零解所以|A|≠0所以|A^k|≠0所以A^kX=0只有零解.
因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是
有非零解,也就是R(A)小于N.1.那么方程的个数要小于未知数的个数(直观上看这个方程组是扁而长,)2.等价于A的列向量线性相关(对系数矩阵A做列分块可得向量形式:a1x1+a2x2+~~~+anxn
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解
a=3时有解;2) 1 2 -3 1 &n
R(A)=n|A|不等于0所以只有零解,不懂再问,
AX=0只有零解,可推出:R(A)=N.即A的秩为N.而A可为k*N矩阵,其中k>=N.即A不一定是N阶方阵.
四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=