综合变量组相关性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:08:01
这个不是回答过了么?
相关分析,和是否保留变量没任何关系你说的是相关分析的显著性如果不显著,2个原因1是你设计有误,数据收集的质量控制不好2是数据原本如此,不能改变事实我经常帮别人做这类的数据分析的再问:额,我发现是版本问
pearson相关性分析的条件是两个变量之间呈线性的相关趋势,此时的相关系数大小会比较准确至于两个变量是否相互影响都没关系另外相关分析只能说明两者之间的互相关系,并不能说明因果关系
简单来讲就是一个事物与另一个事物有多大关系再答:百分比越高相关性越大再问:具体怎么算再问:给了一系列数值,x,y,再答:再答:这样够清楚了吧再问:你误会了,不是回归方程,是在算方程之前的数据相关性检验
你看相关系数较大的是哪几个变量啊,从相关分析表里就可以很直观的看到
恋爱与月均生活费相关系数0.05,检验P值>0.05,二者无相关性.
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.再问:我用的是中文版的SPSS,点击:分析—相关-双变量相关,
相关分析看变量的相关性首先看显著性检验的值,如果<0.05就说明两者有显著相关所以你的显著性检验是0.557说明两个变量之间在95%的置信区间内没有显著地相关性.至于pearson相关性值的大小必须在
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.
主要是看变量类型不同类型的分析方法不一样的我经常帮别人做这类的数据分析的
如果是看读某本书和性别之间是否有关系用关卡方检验
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
不能,所谓的模型是能够提供预测效果的相关分析仅仅是一个笼统的讨论两个变量之间是否有关系,但是这个相关性的大小也不是他们之间的实际相关性,所以不能算作模型
如果你收集的数据是真实数据的话,用修改数据来提高相关性就没必要了.记得在因子分析前要数据预处理,移除界外值.
那你分析错误了,操作对吗再问:对的,回归分析得出结果和相关性分析的不一样,这种情况不存在的吗。可以解释吗再答:肯定做错了的,一般不会
不明白你说的AB的变化之间的相关性是何意再问:是这样的,A是学习动机,B是外界影响因素如教师期望,C是学生年级,学生学习动机以及教师期望各自随年级的变化趋势可以通过比较均值看出来,AB之间在各年级的相
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚
首先得告诉你,在这里的两个变量属于定序变量,因为你是通过四个选项和五个选项来调查的,虽然这两个变量在现实中是数字型的,但是你是通过分段来调查的,所以只能算是定序变量.接下来做相关分析,只能选择spea
看里面的Pearson那一行就是相关系数是正数为正相关负数为负相关一般来说|r|>0.95存在显著性相关;|r|≥0.8高度相关;0.5≤|r|
有什么怎么办的?那结论就是不大了啊,你还要纠结什么?非要把女人说成男人吗?