若AB为阶矩阵 A=2 B=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:30:28
若AB为阶矩阵 A=2 B=3
大学线性代数 AB为n阶方阵,|A|=2,|B|=3,|A-B|=6,则|A逆矩阵-B逆矩阵|=?求详解

B(A逆矩阵-B逆矩阵)A=B-A,两边取行列式即可再问:懂了。

设矩阵A=【】,求一秩为2的三阶方阵B使AB=0

AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?

问一道线性代数证明题设矩阵A为m×n矩阵,B为n阶矩阵.已知r(A)=n,试证:(1)若AB=0,则B=0.(2)若AB

证明(1)AB=0则B的列向量是方程AX=0的解而又有r(A)=n则有AX=0有n个未知数,有n个约束条件则AX=0只有零解则B=0(2)AB=A则有A(B-E)=0同1可知,B-E为零矩阵则B为单位

线性代数——矩阵设矩阵A为m×n矩阵,B为n阶矩阵.已知r(A)=n,试证:(1)若AB=O,则B=O(2)若AB=A,

设B=(a1,a2,a3,……),因为AB=O,所以Aa1=0,Aa2=0,……因为A列满秩,所以方程Aan=0仅有零解,即an=O,所以B=O用类似的方法可以证明第二个

线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵

原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A

n阶矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A*

利用等式AA*=A*A=|A|E.A[2A^(-1)B*+A*B^(-1)]B=2AA^(-1)B*B+AA*B^(-1)B=2|B|E+|A|E=2(|A|+|B|)E=2E.等式两边取行列式得|A

n阶段矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A

你做的对!也可用A*=|A|A^-1丨2A^(-1)B*+A*B^(-1)丨=|2|B|A^-1B^-1+|A|A^-1B^-1丨=|-A^-1B^-1|=(-1)^n(-1/6).A[2A^(-1)

若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+

证:∵AB+A+B=E∴AB+A+B+E=2EA(B+E)+(B+E)=2E(A+E)(B+E)=2E[(A+E)/2](B+E)=E利用逆矩阵的定义可知:(B+E)^(-1)=(A+E)/2证毕!【

证明:若A,B为n阶矩阵 则|AB|=|A||B|

这个只好用定义去证明了,思路不是很难,就是运算麻烦点.不太好打,如果你手边能找到线性代数的书就再好不过了.简单来说,就是构造2n阶的矩阵D(这里用分块矩阵表示)D=|A0||CB|这是一个上三角矩阵,

设A为m*n矩阵,B为n阶矩阵,且R(A)=n,证明:(1)若AB=O,则B=O;(2)若AB=A,则B=E

知识点:齐次线性方程组AX=0只有零解的充分必要条件是r(A)=n(1)记B=(b1,b2,……,bn),由AB=0,知b1,b2,……,bn是Ax=0的解因为r(A)=n,所以Ax=0只有零解所以b

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

已知矩阵A={3.-1.0;0.4.5;2.1.2},B为三阶矩阵,且满足A^2+3B=AB+9I,求矩阵B

我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

线性代数问题1假设矩阵A为m*n矩阵,B 为n阶矩阵.已知r(A)=n,证明(1)若AB=O则B=O(2)若AB=A则B

1.证明:(1)因为AB=0,所以B的列向量都是AX=0的解[看到AB=0就要联想到这个结论]而由已知r(A)=n,所以AX=0只有零解所以B的列向量都是零向量,故B-0.(2)由AB=A,所以A(B