若an等于1,an 1=3an平方 2,则an是什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:55:54
a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
a(n+1)-an=2na100-a99=2*100a99-a98=2*99a98-a97=2*98.a2-a1=2*2上式进行相加得到a100-a1=2*2+2*3+.+2*100=2*(2+3+4
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
∵首项a1=1,公差d=3,an=2014,∴2014=1+3(n-1),解得n=672.故选:C.
an=2a(n-1)+1=2(2a(n-2)+1)+1=4a(n-2)+2+1=8a(n-3)+4+2+1=...=2^(n-1)a1+2^(n-2)+2^(n-3)+...+1=2^(n-1)+2^
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
a(n+6)=an,就说明an的数值是不断周期性的重复的,重复的间隔就是6,从第i项ai开始,往后数6项,即第i+6项就和第i项的数字相等了.既然是6个一循环.那么100中有多少个6,就是经历了多少个
等于2,规律就是6个以后就是反复了.
(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2
an=3n-1由an+1=an+3得知公差d=3所以an=a1+(n-1)d=3n-1
依次第二列加上第一列,第三列加上第二列...原式=-a100...00-a20...0.000...-an0123...nn+1所以原式=(n+1)*(-1)^n*a1*a2*...*an
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
因为an=a0+a1+.+a(n-1)所以a(n+1)=a0+a1+.+an所以a(n+1)-an=an所以a(n+1)=2an所以{an}是等比数列公比q=2因为首项为a0=1所以通项公式an=2^
a(n+1)=Sn/3an=S(n-1)/3相减且Sn-S(n-1)=an所以a(n+1)-an=an/3a(n+1)=(4/3)*an所以是等比,q=4/3a1=1所以an=(4/3)^(n-1)
a[n+1]=2an+3a[n-1]注:[]中的n+1、n-1均为下脚标.两边各加an得:a[n+1]+an=3an+3a[n-1]=3(an+a[n-1])令bn=an+a[n+1],则有:bn=3
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2
An=n(n-1)/2+1