若fx在-2和2+上单增,求a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:05:52
你还是把题照个图片吧,函数看不清再问:再答:你是几年级的学过高数没?再问:还没呐。才高一再答:噢,那我就用这个方法再答:再答:记得好评哦再问:Thanks~
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
f(x)=2x+lnx切线斜率即导数求导,带入f'(x)=x+1/xf'(1)=2
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
x^2=x*xf(x)=x^2+a/xx*x导数=2x1/x导数=-1/x^2∴f(x)导数=2x-a/x^2在x属于【2,+∞】上,f(x)为增函数,∴f(x)导数≥0,2x-a/x^2≥02x≥a
已知函数f(x)=x^2+a若[f(x)+2]/(bx+1)是偶函数,在定义域上f(x)>=ax恒成立,求a的取值范围.设g(x)=[f(x)+2]/(bx+1)=(x^2+a+2)/(bx+1),则
因为等式两边同除以一个式子,则必须保证这个式子不能等于0而x-1是有可能等于0的,所以不能随便的约去(x-1)(x²+x+1)-3(x-1)=0提取公因式x-1得到(x-1)(x²
f(x)=-x^2+ax+lnx+b,f'(x)=-2x+a+1/x,由已知得,f(1)=2,所以-1+a+b=2,--------(1)同时f'(1)=0,所以-2+a+1=0,-------(2)
因为f(x)>=-2^x等价于-2/2^(x-a)+1>=-2^x等价于2^(2x-a)+2^(x-a)-2>=0而要求不等式在x>=a上恒成立,所以要求2^(2x-a)+2^(x-a)-2在x>=a
(2)若f(x)在区间(1,e]上的最大值为-3,求a的值a>=0时,f(x)=ax+lnx>0所以a
f(x)=1/a-1/xf'(x)=1/x²当x∈(0,+∞)时,恒有f'(x)>0因此,f(x)是单调增函数.故:若x1<x2,且x1、x2∈(0,+∞),恒有f(x1)<f(x2)因此,有
f'(x)=2x-a/x²f(x)在[2,+∞)上是增函数,从而f'(x)≥0对于x∈[2,+∞)恒成立.即a≤2x³,x∈[2,+∞)从而a≤(2x³)min,x∈[2
f(x)=(x+2)/(x-1)=((x-1)+3)/(x-1)=1+3/(x-1)令x1>x2>1f(x1)-f(x2)=3/(x1-1)-3/(x2-1)=(3x2-3-3x1+3)/(x1-1)
y=3x-1再问:完整点?再答:
1f(x)=2lnx+x^2f'(x)=2/x+2x=(x+1/x)2>0x+1/x>0x>=1时,x+1/x>0x^2+1>0恒成立.所以x>=1时,f'(x)>>0f(x)在x>=1是增的.f(x
(1)f'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)令f'(x)=0得x1=-1,x2=3列表:x(-∞,-1)-1(-1,3)3(3,+∞)f'(x)+0-0+f(x
f'(x)=1-a/x令f'(x)=0则x=a1.当a
再问:已知数列an为等差数列,且a1=1,s1=25求an的通项公式再答:S1?你没发错?再问:错了,5再问:刚才没看到,我急用,谢谢再问:在三角形ABC中,角A,B,C所对的边分别是a,b,c已知向