若n阶方阵a不等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:47:24
设a是A的特征值,则对任意多项式f,若f(A)=0则f(a)=0(特征值都是最小多项式的根,最小多项式整除任意化零多项式,所以特征值是任意化零多项式的根).现在f(A)=A^m=0,所以f(a)=a^
由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!
A可逆,A^(-1)ABA=BA,因此AB与BA相似
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.
设k1a+k2,Aa+,.+km,A^(m-1)a=0①①左乘A^﹙m-1﹚k1A^﹙m-1﹚a=0A^﹙m-1﹚a≠0∴k1=0①成为k2,Aa+,.+km,A^(m-1)a=0②②左乘A^﹙m-2
对的|A^n|=lA*A*A……Al=|A|*|A|*……|A|=|A|^n
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
因为B行列式不为零,所以B=k*Q1Q2...Qt(Qi为初等矩阵,对应A的初等列变换)由于矩阵经过初等列变换不改变秩,故A经每步初等列变换秩序不变,故r(AB)=r(A)不懂追问
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异