若n阶矩阵A^2-A-2E=0求A的逆矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:31:09
知识点:1.AB=0,则r(A)+r(B)
1(A+E)(A^4-A^3+A^2-A+E)=A^5-A^4+A^3-A^2+A+A^4-A^3+A^2-A+E=A^%+E=E所以A+E可逆逆矩阵为A^4-A^3+A^2-A+E(A-E)(A^4
这个.(a+e0)(0a-e)作初等变换.接着作下去吧.不好打.
证A可逆A²+A-3E=0A(A+E)=3EA(A+E)/3=E所以A可逆,且A的逆矩阵为(A+E)/3证A+2E可逆A²+A-3E=0(A+2E)(A-E)=E所以A+2E可逆,
移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)
1.A^2-2A-E=A^2-2A-15E+14E=(A+3E)(A-5E)+14E=0所以:(A+3E)*[(A-5E)/(-14)]=EA+3E)^-1=(A-5E)/(-14),即(5E-A)/
由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=
A+2A-3E=0,3A=3E,A=E.
对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3
假设λ是A的任意一个特征值,其对应的特征向量为x,则由|A|≠0知λ≠0,且Ax=λx (x≠0),得:A−1x=1λx,于是,|A|A−1x=|A|λx,而:|A|A-1=A*,则:A*x
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
原方程A^2-3A-6E=0.可化为:(A-E)(A-2E)=8E,即可得到,A-2E可逆,且其逆矩阵为(A-E)/8
A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
由题意A^2-3A+2E=0即A^2-3A=-2EA^2-3AE=-2EA(A-3E)=-2EA(A-3E)/(-2)=EA(-A+3E)/2=E所以A可逆,且其逆阵为(-A+3E)/2
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A*2-4A+3E=0(A-E)(A-3E)=0A=E或A=3EA=3E时A-3E是0阵,不可逆.舍去、A=E时,A-3E=-2,0,00,-2,00,0,-2其逆敌阵:-1/2,0,00,-1/2,
首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.
/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值