若三角形内一点满足oa ob oc=0,则ao=1 3(ab ac)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:23:29
若三角形内一点满足oa ob oc=0,则ao=1 3(ab ac)
O是三角形ABC的外心,E为三角形内一点,且满足向量OE=向量OA+向量OB+向量OC

向量AE=向量OE-向量OA=向量OB+向量OC(由已知条件得出)向量BC=向量OC-向量OB则有向量AE*向量BC=OC的平方-OB的平方=0(O是外心OC=OB)AE垂直BC

已知三角形ABC的三个顶点A,B,C及平面内一点P满足向量PA+向量PB+向量PC=0,若实数λ

已知向量PA+向量PB+向量PC=0向量AB=向量PB-向量PA---(1)向量AC=向量PC-向量PA---(2)(1)+(2)=>向量AB+向量AC=向量PB+向量PC-2向量PAλ向量AP=向量

已知点O为三角形ABC内一点,满足OA+2OB+3OC=0,求S△AOC:S△AOB:S△BOC

向量题,S△AOC:S△AOB:S△BOC=2:3:1延长OB至B',使OB'=2OB;延长OC至C',使OC'=3OC;连结B'C',取B'C'中点D,连结OD并延长至A',使DA'=OD;连结B'

已知在三角形ABC中,D是其所在平面内任意一点,且满足向量CB=2向量DA+DB

已知:向量CB=2向量DA+DB,那么:向量CB-向量DB=2向量DA即向量CB+向量BD=2向量DA所以:向量CD=2向量DA那么向量CD//向量DA,且方向相同由于CD与DA有公共点D,所以点C、

已知O是三角形所在平面内的一点,且满足向量摸OB-OC=OB+OC-2OA,则三角形ABC的形状是

是不是这样的?|OB-OC|=|OB+OC-2OA|如果是的话,那么首先合并一下得到:|CB|=|AB+AC|即|AB-AC|=|AB+AC|(AB-AC)*(AB-AC)=(AB+AC)*(AB+A

若O是三角形ABC内一点,满足向量OA+向量OB+向量OC=向量0,求证:O是三角形ABC的重心

设AB中点为D,则向量OA+向量OB=2向量OD=-向量OC则COD共线,即CD是AB的中线,同理可得其他两条中线,而重心是三角形三边中线的交点,那么O是三角形ABC的重心

再三角形ABC中,AB=根号3,AC=2,若O为三角形ABC内一点,且满足向量OA+OB+OC=0,则向量AO*向量BC

BC=(BA+AC)AO.BC=AO.(BA+AC)=(OB+OC).(BA+AC)(AO=OB+OC)=(OA+AB+OA+AC)(BA+AC)=2OA.(BA+AC)+|AC|^2-|AB|^2=

O是平面内一点,若平面内动点P满足OP=OA+λ(AB/AB的模+AC/AC的模)λ∈(R),则P点的轨迹经过三角形AB

AAP为角BAC的角平分线再问:可不可以详细点再答:向量的运算。λ(AB/AB的模+AC/AC的模)=OP-OA=APAB/AB的模、AC/AC的模各为AB、AC方向上的单位长度向量,λ(AB/AB的

已知三角形abc的三个顶点A,B,C及三角形ABC所在平面内一点p.且PA+PB+PC=0,若实数λ满足AB+AC=λA

设D是BC中点向量PB+向量PC=2向量PD向量PA+向量PB+向量PC=0∴向量PA+2向量PD=0向量PA=-2向量PD∴向量AP=2/3向量AD向量AB+向量AC=2向量AD=2*3/2向量AP

若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状

用字母表示向量|OB-OC|=|OB+OC-2OA|平方得OB^2-2OB*OC*cos+OC^2=OB^2+2OB*OC*OC*cos+OC^2+4OA^2-4OA*OB*cos-4OA*OC*co

若O是三角形ABC所在平面内的一点,且满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0,则三角形ABC

OB+OC等于BCOB+OC-2OA等于OB-OA+OC-OA=BA+CA也就是说向量bc垂直于向量ba加向量ca这句话其实就是三线合一的变形

(1/2)已知点O为三角形ABC内一点,满足2OA+3OB+5OC=0(OAOBOC都是向量),记三角形ABC的面积为S

AC中点MBC中点N2OM=OA+OC2ON=OB+OC2OA+3OB+5OC=02OA+2OC+3OB+3OC=04OM+6ON=0MON同线|OM|=2|ON|/3|MN|=|OM|+|ON|=5

求教一道高二数学题M是三角形ABC平面内一点,且满足(MB-MC).(MB+MC).(MB+MC-2MA)=0求三角形形

可得MB-MC=O或MB+MC-2MA=O可得MB=MC或MB+MC=2MA①当MB=MC若点M与点A重合则三角形ABC是等腰△不与点A重合,则△ABC可以是任意△②当MB+MC=2MA时在△里面时,

三角形外一点在三角形所在平面内的射影是三角形外心所要满足的条件

垂直于三角形所在平面且过三角形外心的一条直线

设O是三角形ABC内一点,且满足3OC+2OB+OA=0,求△ABC与三角形AOC的面积之比

若O是三角形ABC内一点,且满足xoa+yob+zoc=0(oa,ob,oc为向量),则s△boc/s△aoc/s△aob=x/y/z.(此结论作为高中课本补充,可记忆)因此,此题答案为6/2即3/1

几何最值问题P是三角形ABC内一点,若PA+PB+PC最小,则点P满足什么性质?

费马(PierreDeFermat)是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅.费马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点

若O为三角形所在平面内一点,且满足(向量OB—向量OC)•(向量OB+向量OC—2向量OA)=0,则三角形A

【注】以下大写字母均表示向量.由“向量加法法则”可知:OB-OC=CB,OB-OA=AB,OC-OA=AC.∴OB+OC-2OA=(OB-OA)+(OC-OA)=AB+AC.∴题设条件等式可化为:CB

点0是三角形ABC所在平面内的一点,满足向量OA*=OB*OC=OC*OA,求证:点o是三角形ABC的外心

向量OA*OB=OB*OC=OC*OAOA*OB=OB*OCOB(OA-OC)=0所以向量OB*CA=0所以向量OB垂直于向量CA同理:向量OA垂直于向量BC向量OC垂直于向量AB所以:点o是三角形A

三角形ABC所在平面内一点P,满足向量PA+PB+PC=NC,求三角形ABC与三角形BCP面积之比

pa+pb+pc=ab如果说是向量,则有:因为pa+pb+pc=ab所以ab=pb-pa于是pa+pb+pc=pb-pa得2pa+pc=0又acp三点在同一直线上,且pa与pc方向相反所以p在线段ac