若点O为三角形ABC的外心,角BOC=50度,则角BAC等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:07:20
若点O为三角形ABC的外心,角BOC=50度,则角BAC等于
设三角形ABC的外心为O,垂心为H,重心为G,求证:O,G,H三点共线

向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线

证明:若P点到三角形ABC的三个顶点的距离相等.则O点是三角形ABC的外心

若P点到三角形ABC的三个顶点的距离相等.即:PA=PB=PC所以:A、B、C三点都在以O点为圆心,PA为半径的圆上,这个圆就是三角形ABC的外接圆从而可知:P点是三角形ABC的外心

设O为三角形ABC外心,平面上一点P使向量OP=向OA+向OB+向OC 则点P是三角形ABC的什么

设三角形的垂心为H,连接AH,HC延长BO交圆于D,连接DA,DC,则由BD是直径可得AD垂直AB和CD垂直BC因为H是垂心所以AH垂直BC,CH垂直AB所以AD平行CH,AH平行CD所以平行四边形A

已知点o为三角形abc的外心,角a等于60度,则角boc的度数是?

∠BOC=180-(180-∠A)÷2=180-(180-60)÷2=180-60=120度

如图 点I是△ABC的内心,点O为三角形ABC的外心,若∠BOC=140度,求∠BIC的度数,急

125°∠BOC=140°且O为△ABC外心所以弧BC所对的圆周角BAC=70°所以∠ABC+∠BCA=110°又∵I为△ABC内心∴∠IBC+∠ICB=55°∴∠I=125°

已知点O为三角形ABC的外心,且向量AC模为4,向量AB模为2,求向量AO*BC

设BC中点为P,则OP⊥BC,向量AO=AP+POAO*BC=(AP+PO)*BC=AP*BC+PO*BC=AP*BC=1/2*(AB+AC)(AC-AB)=1/2*(|AC|^2-|AB|^2)=1

若O为三角形ABC的外心,且角BOC=60度,则角BAC=?(此题无图)谢谢求解答

三角形ABC为圆内接三角形∠BAC为弧BC所对圆周角,∠BOC为弧BC所对圆心角因此∠BAC=∠BOC/2=30

三角形ABC的外心为O,重心为H,求证,向量OH=OA+OB+OC

题目不对吧?应该是OH=1/3(OA+OB+OC)证明:OH=OA+AH=OA+2/3AD=OA+2/3(AB+BD)=OA+2/3(AB+1/2BC)=OA+2/3AB+1/3BC=OA+2/3(O

已知点O为三角形ABC的外心,角A等于60度,则角BOC的度数是_____.

已知点O为三角形ABC的外心,角A等于60度,则角BOC的度数是120°(圆心角是圆周角的2倍)

点o是三角形abc的外心,角a=72度,求角boc的度数

点o是三角形abc的外心,则oa=ob=oc,∠oab=∠oba,∠oac=∠oca,∠oab+∠oac=∠a=72度,∠boc=∠oab+∠oba+∠oac+∠oca=144度.

已知点O为三角形ABC的外心,且向量AC模为4,向量AB模为2,求向量AO*BC(详细一些)

设D为BC中点,则AD=(AB+AC)/2点O为△ABC的外心,故OB=OC,又OD为等腰△OBC中线,故OD与BC垂直,向量OD•BC=0于是AO•BC=(AD+DO)

已知点O为三角形ABC的外心,角A,B,C的对边分别为a,b,c.

(1)因为O是外心,所以OA,OB,OC的长度都相等,设为x.设AO的延长线交BC于D,则4x*sin角BOD=5x*sin角COD4x*cos角BOD+5x*cos角COD=3x联立解得cos角CO

已知圆O为三角形ABC的外心,诺角A=180°,求角BOC度数

因为,同弧所对的圆心角等于圆周角的2倍,而且,∠BAC是弧BC所对的圆周角,∠BOC是弧BC所对的圆心角,所以,∠BOC=2∠BAC;已知,∠BAC=80°,(三角形任一内角都小于180°,故题中角A

在三棱锥P-ABC中,PA=PB=PC,试证:点P在平面ABC上的正投影O为三角形ABC的外心

证全等三角形,PA=PB,PO=PO,所以PAO全等于PBO,所以AO=BO,同理证AO=BO=CO,这不就是外心吧

O为三角形ABC的外心,若角BAC=70度,则角BOC的度数为

140度,在三角形中,由于外接圆O的圆心为O点,角BAC为圆周角,在同一个圆中,同弧对应的圆周角是圆心角的一半.

点O是三角形ABC的外心,点I是三角形ABC的内心,且角BIC=角BOC,求角A的度数

因为∠BIC=90+1/2∠A,∠BOC=2∠A所以90+1/2∠A=2∠A所以180=3∠A所以∠A=60度

如图在三角形abc中 角abc等于60 角acb等于70 若点o是三角形的外心,则角boc的度数

因为 O是三角形ABC的外心,  所以 角BOC是三角形ABC的外接圆的圆心角,     角BAC是三角形ABC的外接圆的圆周角,  因为 角ABC=60度,角ACB=70度,  所以 角BAC=50