若点O为内心,角BOC=140
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:14:33
外心140°,不知道你们学过没有:等弧对等角(圆周角或圆心角),但等弧对的圆心角是圆周角的两倍.这个定理也应该很好证明的.内心的那个是125度
若内心,则∠BIC=180-(∠IBC+∠ICB)=180-1/2(∠ABC+∠ACB)=180-1/2*130=115°若外心,连结IA,∠BIC=180-(∠IBC+∠ACB)=180-(180-
∵∠ACB=75°,∠ABC=50°∴∠BAC=55°若O为△ABC的内心则∠BOC=90°+1/2∠A=117.5°若O为△ABC的外心则∠BOC=2∠A=110°
∠A=a,∠B+∠C=180°-a点O是其内心,OB.OC分别为∠B,∠C的平分线∠OBC+∠OCB=1/2(180°-a)=90°-a/2∠BOC=180°-(∠OBC+∠OCB)=90°+a/2
O是外心,求角BOC:根据外接圆性质,圆心角BOC是其对应弧段的圆周角A=60度的2倍,即角BOC=120度I是内心求角BIC根据内接圆性质(圆心是三角形角平分线的交点),角BIC=180度-0.5*
延长AI与外接圆交于P,连结BP,PC,〈∠BOC=140°,〈BAC=〈BOC/2=70°,(同弧圆周角是圆心角的一半),I是内心,即是角平分线的交点,〈BIP=〈BAI+〈IBA,(外角等于不相邻
125°∠BOC=140°且O为△ABC外心所以弧BC所对的圆周角BAC=70°所以∠ABC+∠BCA=110°又∵I为△ABC内心∴∠IBC+∠ICB=55°∴∠I=125°
1.O为外心,即O为三角形ABC的外接圆圆心,有
内心是角平分线的交点∵∠OBC+∠OCB=180º-110º=70º∴∠ABC+∠ACB=2(∠OBC+∠OCB)=140º∴∠A=180º-∠ABC
∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB2=180°−52°2=64°,∴∠BOC=180°-64°=116°.故答案为:116°.
旋转之后有两个隐藏已知:△ABO与△CBO1全等,∠OBO1=60°所以△BOO1为等边三角形,∠BO1O=∠BOO1=60°∠CO1O=∠BO1C-∠BO1O=∠AOB-∠BO1O=55°∠COO1
∵点O是△ABC的内心,∠ABC=50°,∠ACB=75°,∴∠OBC=12∠ABC=12×50°=25°,∠OCB=12∠ACB=12×75°=37.5°,∴∠BOC=180°-∠OBC-∠OCB=
注意有两种情况∵∠BOC=140°则∠A=70°或110°当∠A=70°时,∠BIC=90°+1/2*70=125°当∠A=110°时,∠BIC=90°+1/2*110=145°
∠BOC=180°-∠OBC-∠OCB=180°-∠ABC/2-∠ACB/2=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2如仍有疑惑,欢迎追问.祝:
(1)∵∠AOB在一直线上,∴∠AOB=180度∵OE平分∠AOC,∴∠COE=1/2∠AOC∵OF平分∠BOC,∴∠COF=1/2∠BOC∵∠EOF=∠EOC+∠COF=1/2(∠AOC+∠COB)
因为o是三角形ABC的内心所以∠OBC=1/2∠ABC,∠OCB=1/2∠ACB因为∠BOC+∠OBC+∠OCB=180°所以∠OCB+∠OBC=180°-155°=25°所以∠ABC+∠ACB=2X
因为∠BIC=90+1/2∠A,∠BOC=2∠A所以90+1/2∠A=2∠A所以180=3∠A所以∠A=60度
A,0,B三点共线,所以∠AOC+∠BOC=180度,又因为2∠AOC=3∠BOC,所以可求出∠BOC=72度,所以∠AOD=∠BOC=72度
(1)作AO延长线OD,∠BOC=∠BOD+∠DOC=2∠BAO+2∠OAC=2*58°=116°(2)O向AB、BC、CD边做垂线,分别交于点D、E、F,则有,∠DOF=180-58=122°,∠B
∵∠BOC=100°,∴∠OCB+∠0BC=180°-∠BOC=80°,∵O是△ABC的内心,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=160°,∴∠A=180°-(∠ABC+∠ACB)=20°