若等差数列an的前n项和为sn满足s4小于等于12,s9大于等于36

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:44:23
若等差数列an的前n项和为sn满足s4小于等于12,s9大于等于36
等差数列{An}的前n项和为Sn,若 lim Sn/n方 =2

答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为(  )

设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2.若q=1,则Sn=na1,式子显然不成立.若q≠1,则有2a1(1−qn)1−q=a1

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q=?

因为Sn+1,Sn,Sn+2成等差数列S(n+1)+S(n+2)=2*S(n)(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1

已知等差数列{an}的前n项和为Sn,且a1不等于0,求(n*an)/Sn的极限、(Sn+Sn+1)/(Sn+Sn-1)

设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n

设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.

an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/22an=na1+nan-na1-nan-1+a1+an-1(n-2)an=(n-1)*(an-1)-a1(1)同理(n-1)

设等差数列 {an}的前n 项和为Sn,若S9>0 ,S10

你数列当中的第五个元素

已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs

若等差数列{An}的前m项和为Sm,前n项和为Sn,且Sm:Sn=m²:n²,则Am:An=?

∵等差数列{an}前m项和为Sm,若Sm:Sn=m^2:n^2∴m(a1+am)/n(a1+an)=m^2/n^2∴m[2a1+(n-1)d]=n[a1+(m-1)d]∴2(m-n)a1=(m-n)d

设等差数列{an}的前n项和为Sn,若-a2013

S2013=2013(a1+a2013)/2因为a1+a2013>0所以S2013>0S2014=2014(a1+a2014)/2因为a1+a2014

等差数列{an}.前n项和为Sn.

唉,你太粗心了吧~我给你修正下(向我现在这样的好人不多了哈哈~!)Sm/Sn=(m^2)/(n^2),求am/an?对吧,很简单的呦am/an=2am/(2an)=a1+a2m-1/(a1+a2n-1

等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则An/Bn的值是?

S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-

等差数列an,bn的前n项和分别为Sn,若Sn/Tn=2n/(3n+1),求an/bn的表达式

本题考查的是数列的性质a1+a2n-1=2an因为S2n-1=[(n+1)(a1+a2n-1)]/2=(n+1)anT2n-1=[(n+1)(b1+b2n-1)]/2=(n+1)bn所以an/bn=S

等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

∵SnTn=2n3n+1,∴anbn=a1+a2n−1b1+b2n−1=S2n−1T2n−1=2(2n−1)3(2n−1)+1=2n−13n−1∴limn→∞anbn=limn→∞2n−13n−1=l

已知等差数列{an} 的前n项和为Sn,若S12>0,S13

S12=6(a6+a7)>0a6+a7>0S13=13*a7-a7绝对值最小的是第7项

若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列(Sn/n)为等差数列,且通项

Tn=b1*b2*b3*……*bn=b1*(b1*q)*(b1*q^2)*……*[b1*q^(n-1)]=(b1)^n*q^[1+2+……+(n-1)]=(b1)^n*q^[n(n-1)/2]={b1

已知等差数列{an}{bn}的前n项和分别为Sn,Tn,若S

∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214

已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An?

S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+

记数列{an}的前n项和为Sn,若{Sn/an}是公差为d的等差数列,则{an}为等差数列的充要条件是d=?

因为这样求得的d只能保证2a2=a1+a3,也就是前3项成等差数列,并不能保证3项之后.可以以较为普遍的情况来分析.