n!=1*2*3*n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:12:51
证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1
裂项相消法1/3【1/n-1/(n+3)+1/(n+3)-1/(n+6)+1/(n+6)-1/(n+9)】=1/(2n+18)1/3{1/n-1/(n+9)}==1/(2n+18)交叉相乘6n+54=
n²+3n=1n=(-3±√5)/2n(n+1)(n+2)+1=n³+3n²+2n+1=n(n²+3n)+2n+1=3n+1=3(-3±√5)/2+1=(-7±
1、n=1的时候显然成立2、假设当n=k的时候,命题成立即k+(k+1)+(k+2)...+2k=3k(k+1)/2当n=k+1时k+1+(k+1+1)+(k+1+2)……+2k+(2k+1)+(2k
这很简单就是整式的加减法和乘法,大约是初一(七年级)下学期的内容1+(n+1)+n*(n+1)+n*n+(n+1)+1=1+n+1+n²+n+n²+n+1+1=2n²+3
二项式展开,左=1+n*2/n+n(n+1)/2*(2n)²+.>=3+2(n+1)/n=5+2/n>5-2/nn>=3用在左边展开时,至少得到三项的合理性
当n=k+1时,等式左边一共有k+1个式子相乘,倒数第二项就是[(k+1)+k],(k+k)这一项其实是(k+1+k-1)也就是倒数第三项.再问:那比如2+4+6+8+2nn=k+1左边=2+4+6+
n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n)n/(n²+n)+n/(²+n)+.+n/(n²+n)=n*n/(n²+n)
你应弄清原式左边是n项的和,当n=k+1时,就是k+1项的和,所以,1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1=1*k+1*1+2(k-1)+2*1+3
原式=(3n²+3n+2n²-3n²+n+6n²+12n)/6=(2n²+6n²+16n)/6=(n²+3n+8)/3
设n+2=x所以(n+1)(n+2)(n+3)=(x-1)*x*(x+1)=(x^2-1)*x=x^3-x将n+2=x代入,得n^3+3n^2*2+3n*2^2+2^3-n-2=n^3+6n^2+12
这个就是二项式定理的逆用1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=1*C(n,0)+2C(n,1)+4C(n,2)+...+2^nC(n,n)=(1+2)^n=3^n明教为您解答
1)C(n,0)+2C(n,1)+3C(n,2)+4C(n,3)+...+(n+1)C(n,n)=C(n,0)+2C(n,1)+3C(n,2)+4C(n,3)+...+(n+1)C(n,n)-(C(n
全部展开,A(n)=an^4+bn^3+cn^2+dn+6然后分4个数列求和,前面系数提出来就是单阶的求和了,都有公式吧
先证明对于任意x≠0,1+xf(0)=1>0,即1+x
n=1时,左边=1*1=1右边=1/6*1*2*3=1左边=右边,等式成立!假设n=k时成立(k>1)即:1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2
2^(n-1)+2^(n-2)+2^(n-3)+.+2^(n-n)为等比数列公比为q=0.5,利用等比数列求和公式Sn=(a1+an*q)/(1-q)(公比为q)此处q=0.5证明见下2^(n-1)+
n(n+1)(n+2)(n+3)+1=(n^2+3n)(n^2+3n+2)+1=(n^2+3n)^2+2(n^2+3n)+1=(n^2+3n+1)^2
mc(n,m)=m(n!)/(m!)(n-m)!=(n!)/(m-1)!(n-m)!=n*(n-1)!/(m-1)!(n-m)!=nc(n-1,m-1)所以等式左边=nc(n-1,0)+nc(n-1,