角ACB=90° SA垂直平面ABC AD垂直SC 求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:13:53
再问:学霸,求详细解答,再答:这就是详细的啊再问:可是没有看懂你写的再答: 再问:谢谢,学霸,有图没?再答:什么图啊?这不需要图啊再问:哦哦,谢谢
作SD⊥BC于D,连接AD∵∠BSC=90°,SA=SB=SC∴BC=√2SB,SD=√2SB/2∵∠BSA=∠CSA=60°∴△BSA、△CSA是等边三角形∴AB=AC=SB∴△ABC是等腰直角三角
1、在平面ABCD上作CE⊥AD,垂足E,BC//AD,AB⊥AD,CE//AB,AB=BC=a,四边形ABCE是正方形,AE=BC=a,<ECA=45度,DE=AD-AE=2a-a=a,CE=
证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两
(1)因为pa垂直于平面ABC,所以PA垂直于BC,又角ACB=90度,即有BC分别垂直于AC和PA故BC垂直平面PAC(2)因为BC垂直平面PAC,所以BC垂直PC(3)?求什么呀?
你画个图,就知道了啊.ABC中AC是球上一小圆o2的直径.AC=√3.过球心作一圆平行于o2,令该圆为o1.则有AS垂直于O1,且相较于一点D.则AD=1/2、则三角形OAD中OA=1,即为球的半径.
1.直线SA与面SCD所成角的正弦值,无疑就是用A点到面SCD的距离h,比上SA的距离,SA已知为1,故,只需求出A到面SCD的距离h即可,可通过四面体体积的转换法求出h:取SC中点F,连接FD,取B
解,因为PA垂直平面ABC,所以PA垂直BC,又因为AC垂直BC,所以BC垂直平面APC.而BC在平面PBC上,所以平面PBC垂直平面APC,也即平面PBC和平面PAC的成角是90度.因为BC垂直平面
(1)因为SA垂直平面则AD垂直于SA.因为ABCD是正方形则AD垂直于AB所以AD垂直于平面SAB则AD垂直于SB(2)由(1)知AD垂直于平面SAB即BC垂直于平面SAB所以角BSC为直线SC与平
在三角形SAB中,设E为SB的中点,连接AE.易证AE垂直SB另外用已知条件也易证BC垂直平面SAB从而AE垂直BC因此AE垂直平面SBC,所以向量AE即为平面SBC的一个法向量.
以AB、AD、AS分别为x、y、z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1/2,0),S(0,0,1)因为AB=(1,0,0),AS=(0,0,1),所
然后呢?再问:求证,ad垂直于面sbc再问:再答:BC垂直AC(直角)BC垂直SA(SA垂直ABC面内所有直线)所以BC垂直SAC平面则BC垂直AD所以AD垂直BC和SC即AD垂直平面SBC再问:额,
(1)连接BD与AC交于点O,连接EO∵点E与点O分别为SB和BD的中点∴EO∥SD∵EO含于平面∴SD∥平面AEC
1、∵DE是SC的垂直平分线,∴DE⊥SC,∵SA⊥平面ABC,AB、AC∈平面ABC,∴SA⊥AB,SA⊥AC,∵SA=AB=a,∴△SAB是等腰RT△,∴SB=√2a,∴SB=BC=√2a,∵CB
因为SA垂直于平面ACB,所以BC垂直于SA,又因为角ACB=90度,所以BC垂直AC,所以BC垂直面SAC,AD在面SAC内,所以BC垂直AD,AD垂直SC,根据线面垂直判定定理知,AD垂直面SBC
原题有漏洞,需要补充说明:点D在SC上,点P在SB上.(1)由SA⊥面ABC,得:BC⊥SA,又BC⊥AC,而SA和BC是两相交直线, 所以有:BC⊥面SAC,又AD在面SAC上,得:AD⊥BC.
证明:作SH⊥AC交AC于点H∵SA=SC∴AH=HC在Rt△ABC中,H是AC的中点∴BH=1/2AC=AH又SH=SH,SA=SB∴△SAH≌△SBH(SSS)∴SH⊥BH又AC∩BH=H∴SH⊥
AD垂直SC条件多余的;易证bc垂直平面SAC,只要过bc的平面都垂直平面SAC因此;平面SBC必垂直平面SAC
取BC的中点D,然后连接AD,SD,首先SD⊥BC,AD⊥BC,接着根据已知的数量关系设SA=2a,把SD,AD表示出来,最后用勾股定理证明AD⊥SD,即得到平面ABC垂直平面SBC