计算∫∫d(4-x^2-y^2)dσ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:31:46
计算∫∫d(4-x^2-y^2)dσ
计算二重积分:∫∫D ln(x^2+y^2)dxdy,其中D为e^2≤x^2+y^2≤e^4

{x=rcosθ、y=rsinθe²≤x²+y²≤e⁴→e²≤r²≤e⁴→e≤r≤e²∫∫_[D]ln(x²

计算 ∫∫ln(e+x^2+y^2)do ,其中D=(x,y)|X^2+y^2《1

再问:极径r积分区域为什么是0

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫1/(x^2+y^2+R^2)dxdy,其中D为x^2+y^2

转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤

计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2

首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积

计算二重积分∫∫D(x-y)dx D是y=2-x²和y=2x-1围成的区域

y=2-x²和y=2x-1的交点为:(1,1),(-3,-7)∫∫D(x-y)dxdy先积y=∫[-3→1]dx∫[2x-1→2-x²](x-y)dy=∫[-3→1](xy-(1/

计算二重积分 ∫D∫(sinx/x)dxdy,其中D为由y=x,y=2x和x=1围成的平面区域

原式=∫_0^1▒〖(sinx/x)dx〗∫_x^2x▒〖dy=∫_0^1▒〖(sinx/x)*(2x-x)dx〗〗=∫_0^1▒〖(sinx)dx=-

计算二重积分,∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y

这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉

计算二重积分:∫∫(a-√(x^2+y^2))dxdy,D的范围:x^2+y^20

用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算二重积分∫∫sin(x^2+y^2)dxdy,其中D:x^2+y^2≤4

我不能传图片--||用换元法:x=r*cos(a);y=r*sin(a)∫∫sin(x^2+y^2)dxdy=∫∫r*sin(r^2)drda;其中r的积分限为:[0,2],a的积分限为:[0,2pa

计算二重积分D∫∫e^(-x^2-y^2)dδ d:x^2+y^2

换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]

计算二重积分∫∫e^y^2dσ,其中D:y=x及y=2x,y=1所围成的闭区域

y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/