n²(1-cos(1 n))收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:06:11
首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以
俺来回答一下,马上拍照再答:
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
1/2^(n+(-1)^n)
交错级数,用莱布尼兹判敛法再问:莱布尼茨的的前提条件之一不是前项大于后项吗这里怎么满足。。。求教再答:那里面所说的是把(-1)^n去掉之后剩下的正项,在这里就是1/n
设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛
设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛
利用三角函数的积化和差公式,得到an=sin(n+1)cos(n-1)/n^p=[sin(2n)+sin2]/2n^p={sin(2n)/n^p+sin2/n^p}/2可证当0再问:确实是条件收敛,我
先考察该级数是否绝对收敛,令an=(-1)^n(1-cos(a/n))由于1-cos(a/n)≥0,因此|an|=1-cos(a/n)=2[sin(a/2n)]^2,我们只需考察级数∑[sin(a/2
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
p>1,绝对收敛;0
∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再
cos派等于负一,该式等于(1+1/n),n趋向无穷时,该式极限为1.证明可以用单调有界定理,上下界分别是2跟1,加上单调递减,结论得证.
对于任意ε>0令N=[1/ε]+1>1/ε则对于任意n>N|-1/n|=|1/n|再问:您好,谢谢你!是不是这样的解法适用于所有的负值的式子呢?还有就是这样的解法在哪里有?我想进一步了解!谢谢您!再答
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛