n元非齐次线性方程组AX=b,如果有解,则解集合的秩为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:02:43
思路:设a1,...,ar是AX=0的基础解系,c是AX=b的特解则c,c+a1,...,c+ar是非齐次线性方程组AX=b的解集合的一个极大无关组再问:证明c,c+a1,...,c+ar是极大无关组
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
必须无解.因为x的秩<b的秩.
是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3
因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零,则a1-a2就是AX=0的一个基础解系
R(A)=R(A,b)
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
设ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得kb=0所以k=0所以k1b1+...+krbr=0因为b1,...,br是基础解系(线性无关)所以k1=...=kr=0所以a,b1
因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是
很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',…… bn'&n
a=3时有解;2) 1 2 -3 1 &n
设非齐次线性方程组Ax=B由n个未知数n个方程组成,若R(A)=m<n,则方程组Ax=B的解得情况?一个还是无数还是~10
由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b
四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=