n根号(2ax-x^2)的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:29:20
换元x=asinu,dx=acosudu∫(a^2-x^2)^(-3/2)dx=∫(acosu)^(-3)acosudu=1/a^2∫(secu)^2du=tanu/a^2+C因为sinu=x/a,c
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
先进行换元,令根号x=t再答:
原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
∵0≤lim∫x^n*√(1+x^2)dx≤lim∫2x^ndx=lim2/(n+1)=0∴lim∫x^n*√(1+x^2)dx=0
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
原式=∫根号(4-(x+1)²)dx,只要令x+1=2cost,则x=2cost-1,dx=-2sintdt,故原积分式就化成∫(2sint)*(-2sint)dt,这样就容易积分了,最后把
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
既要换元,又要分部,还涉循环积分.初学者有难度.
原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar
∫dx/√(ax-x^2)(0----a)=∫dx/√-[x^2-ax+a^2/4-a^2/4](0----a)=∫dx/√[(a/2)^2-(x-a/2)^2](0----a)=∫d[(x-a/2)
再问:第二种方法能详细解说一下吗?`(*∩_∩*)′再答:
设x=sint,则dx=cost*dt∫x^2/√(1-x^2)*dx=∫(sint)^2*(cost)*dt/cost=∫(sint)^2*dt=1/2*∫2(sint)^2*dt=1/2*∫(1-
-(a-x^2)^(3/2)/3