n阶方阵A满足A^2-2A-4E=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:08:55
因为A^2=E所以(A-E)(A+E)=0题目是不是有问题
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵.
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
3E+2A-A^2=E(3E-A)(E+A)=E所以(A+E)^-1=3E-A
A^2-3A-2E=OA^2-3A=2EA(A-3E)=2EA*[(A-3E)/2]=E自然A^-1=(A-3E)/2祝学习愉快请别忘记采纳
A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2
[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A
A(A-E)=0,|0E-A|*|1E-A|=0,特征值为0或1.或者设特征值为r,特征向量a,有Aa=ra,A^na=r^na,A^2-A=0,A^2a-Aa=0,r^2-r=0,则r=0或1.
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n
(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所
由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.
选D利用Sylvester不等式rank(A)+rank(B)