设 A满足A^2=2A-3E=0 ,证明:A 3E 可逆,并求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:56:43
设 A满足A^2=2A-3E=0 ,证明:A 3E 可逆,并求
设方阵A满足2A^2+A-3E=0证明3E-A可逆

哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......

设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.

A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,

设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.

移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n

证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、

设方阵A满足A^2-2A+3E=0,证明A+E可逆,并求(A+E)^-1

再答:高代好久没看了不对了见谅只会第一问再答:第一个超错了其他没问题再答:重写吧再答:再问:嗯,但题目是3E再答:

设4阶矩阵A满足|3E-A|,AAT=2E,|A|

AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆

A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方

线性代数中,设方阵A满足A^2-2A+3E=0,如何证明 A-3E可逆.

证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴

设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/

首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设方阵A满足等式A^2-3A-10E=0,证明A-4E可逆.

从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因

设3阶矩阵A满足3E+2A-A^2=0,r(E+A)+r(3E-A)=

3E+2A-A²=0(3E-A)(A+E)=0即R(3E-A)+R(A=E)≤3又因为(3E-A)+(A+E)=2E所以R(3E-A)+R(E+A)≥R(2E)=3最后,所以(3E-A)+R