设a,b,c 属于正实数,利用排序不等式证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:01:26
设a,b,c 属于正实数,利用排序不等式证明
设a,b,c为正实数,且abc=1,证明:见图片

先作代换a=x^2/yz,b=y^2/zx,c=z^2/xy,等价于∑xyz/(xyz+y^3+z^3)≤∑yz/(2yz+x^2)x/∑x-xyz/(xyz+y^3+z^3)=x(y+z)*(y-z

设a、b、c、d是正实数,且满足abcd=1,

先证明对x,y>0,有1/(1+x)^2+1/(1+y)^2>=1/(1+xy)证:上式等价于(1+xy)(1+y)^2+(1+xy)(1+x)^2>=(1+x)^2(1+y)^21+xy^3+x^3

设a、b、c均为正实数,求证:三个数a+1b

证明:假设a+1b,b+1c,c+1a都小于2,则(a+1b)+(b+1c)+(c+1a)<6.∵a、b、c∈R+,∴(a+1b)+(b+1c)+(c+1a)=(a+1a)+(b+1b)+(c+1c)

设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2

方法很多,给个起点高点的再问:谢谢你了,你太厉害了。能介绍一下chebyshev和cauchy不等式吗再答:1、Chebyshev不等式。设两组数a1

设a,b,c,d属于正实数,用柯西不等式证明(ab+cd)(ac+bd)≥4abcd

方法一、直接用基本不等式:对于正数x、y,有:x+y≥2√xy,则:(ab+cd)(ac+bd)≥2√(abcd)×2√(acbd)=4abcd方法二、由柯西不等式,得:(ab+cd)(ac+bd)≥

设a,b,c为正实数,求证1/a+1/b+1/c+abc≥2√3

证明:因为为正实数,由平均不等式可得1/a+1/b+1/c≥3倍三次根号下1/a*1/b*1/c即1/a+1/b+1/c≥3/abc∴1/a+1/b+1/c+abc≥3/abc+abc又3/abc+a

设实数a、b、c满足a

由条件得,bc=a2-8a+7,b+c=±(a-1),∴b、c是关于x的方程x2±(a-1)x+a2-8a+7=0的两实根,由△=[±(a-1)]2-4(a2-8a+7)≥0,解得1≤a≤9.

已知a,b,c属于正实数,且a+b+c=1.求证:ab+bc+ca

证:由均值不等式得a²+b²≥2ab,b²+c²≥2bc,c²+a²≥2ca(a²+b²)+(b²+c

设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3

【证法1】左边=c/(a+b)+1+a/(b+c)+1+b/(c+a)+1-3=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3=(a+b+c)[1/(a+b)+

设a,b,c是正实数,且(a+1)(b+1)(c+1)=8,证明abc≤1

由已知得:abc+ab+bc+ac+a+b+c+1=8因为a+b+c小于或等于3次根号下3abcab+bc+ac>=3次根号下3(abc)^2abc+ab+bc+ac+a+b+c+1>=abc+3次根

已知a,b,c属于正实数.求证 a平方+b平方+c平方大于等于1/3

漏掉了一个条件吧a+b+c=1对吗?早晨没有事,做做3(a平方+b平方+c平方)=a平方+b平方+c平方+2(a平方+b平方+c平方)>=a平方+b平方+c平方+2ab+2bc+2ac=(a+b+c)

利用柯西不等式证明设a,b,c,d为正实数,(ab+cd)(ac+bd)≥4abcd

证明a,b,c,d为正实数(ab+cd)(ac+bd)=[(√ab)^2+(√cd)^2][(√ac)^2(√bd)^2]≥(√ab√ac+√cd√bd)^2=bc(a+d)^2=bc(a^2+d^2

设a,b,c属于正实数,求证根号下(a+b)+根号下(b+c)>根号下(c+a)

不等号两边同时平方得左边=a+2b+c+2根号下(a+b)根号下(b+c)右边=c+a做差法比较左边-右边=2b+2根号下(a+b)根号下(b+c)a,b,c属于正实数2b+2根号下(a+b)根号下(

设abc为正实数,求证:a+b+c

由均值不等式:a+b≥2√ab及平方均值不等式:(a²+b²)/2≥[(a+b)/2]²得:(a²+b²)/(2c)+c≥2√(a²+b&#

1.设a,b,c都属于正实数,求证根号下(a的平方+b的平方)+根号下(b的平方+c的平方)+根号下(c的平方+a的平方

题目是:根号(a^2+b^2)+根号(b^2+c^2)+根号(c^2+a^2)≥(根号2)*根号(a+b+c)吧!因为(a-b)^2>=0,所以a^2+b^2>=2ab,两边同加a^2+b^2得:2*

设abc都是正实数,证明a/(b+c)+b/(a+c)+c/(a+b)大于等于3/2

看这个贴子的3楼http://tieba.baidu.com/p/1296048627

a,b,c属于正实数.证明:(a+b+c)/3大于等于根号下三次方abc

证明:对于正数a、b、c,有a³+b³+c³≥3abc成立,等号当且仅当a=b=c时成立;因为:a³+b³+c³-3abc=(a+b+c)(

已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8

﹙a+b)(b+c)(c+a﹚≥﹙2√ab﹚﹙2√bc﹚﹙2√ca﹚=8abc=8

设a,b,c为正实数,并且满足abc=1

令a=x/y,b=y/z,c=z/x那么原不等式等价于证(x+z-y)(y+z-x)(x+y-z)≤xyz若x+z-y,y+z-x,x+y-z有一个不大于0,不妨设x+y≤z,那么y+z-x≥y+x+

已知a,b,c属于正实数,求证(a+b+c)(a2+b2+c2)>=9abc

a+b+c≥3(abc)(1/3)即abc开三次方同理a2+b2+c2≥3(a^2b^2c^2)(1/3)则(a+b+c)(a2+b2+c2)>=3(abc)(1/3)*3(a^2b^2c^2)(1/