设A,B为四阶非零矩阵,且AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:15:33
设A,B为四阶非零矩阵,且AB=0
设A、B均为n阶正交矩阵,且|AB|=-1,则|A^(-1)B^T|=?

A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1

设A,B均为正定矩阵,则AB正定当且仅当AB=BA

用A*表示矩阵A的共轭转置,其余同.必要性:设AB是正定矩阵,则AB=(AB)*=B*A*=BA.充分性:设AB=BA,则我们已看到AB=BA=B*A*=(AB)*即AB是Hermite矩阵,下面只需

设A,B为n阶矩阵,且E-AB可逆,证明E-BA

E-AB可逆,则设其逆为C有(E-AB)C=E->B(E-AB)CA=BA->BCA-BABCA-BA+E=E(两边多配了一个E)->(E-BA)BCA+(E-BA)=E->(E-BA)(BCA+E)

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆

最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但AB=0,不可逆

设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆

AB-I=AB-(B^-1)*B=(A-B^-1)*B所以上式两边都右乘(AB-I)^-1,得到I=(A-B^-1)*B*(AB-I)^-1=(A-B^-1)*(B*(AB-I)^-1)那(A-B^-

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足

都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设AB为n阶正交矩阵且|A||B|=-1 证明|A+B|=0

由于A,B为正交矩镇,AA^T=E,BB^T=E因此A^T(A+B)B^T=B^T+A^T=(A+B)^T所以|A^T(A+B)B^T|=|(A+B)^T|=|A+B|即|A^T||(A+B)||B^

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

设A,B为n阶矩阵且A+B=E,证明:AB=BA

AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵