设A,B均为n阶矩阵,如果AB=O且A B=E,则RA R

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:57:28
设A,B均为n阶矩阵,如果AB=O且A B=E,则RA R
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A,B均为n阶矩阵,且AB=BA,证明: 1)如果A有n个不同的特征值,则B相似于对角矩阵;

(1)AB=BA等价于(P^{-1}AP)(P^{-1}BP)=(P^{-1}BP)(P^{-1}AP)把P^{-1}AP取成对角阵即可,接下去自己动手算(2)方法同上,取P1使得P1^{-1}AP1

设A,B均为n阶矩阵,证明:r(AB-BA+A)=n

我想了好久没作出来!后来发现题目有误!比如取A=B且R(A)

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.

(1)r(A)=nAX=0X只有零解所以B就是零解组成的矩阵,即零矩阵(2)AB=AA(B-E)=0由(1)知道(B-I)=0B=I

设A,B为n阶矩阵且A+B=E,证明:AB=BA

AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA

设A,B均为n阶可逆矩阵,求证:(AB)^*=B*A*

证明:因为A,B可逆,故A^-1,B^-1存在,AB可逆,且有A*=|A|A^-1,B*=|B|B^-1.故(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|

设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*

因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.(AB)*=(AB)^(-1)IABI=B^(-1)A^(-1)IABI=B^(-1)IBIA

设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.

考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶上三角形矩阵,试证AB亦为n阶上三角形矩阵

矩阵X=(xij)为n阶上三角形矩阵当且仅当当i>j时,矩阵的元素xij=0.设A=(aij),B=(bij)因为A,B均为n阶上三角形矩阵,故当i>j时,aij=0,bij=0令C=AB=(cij)

设A,B为n阶矩阵,如果E+AB可逆,证明E+BA可逆.

因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���