设A,B都是n×n的对称矩阵,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:30:35
由已知A^T=A,B^T=B所以(A+B)^T=A^T+B^T=A+B(A-2B)^T=A^T-2B^T=A-2B所以A+B,A-2B是对称矩阵再问:可以变成图片的方式吗,写在纸上?再答:^T是转置记
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
[(B)TAB]T=(B)TATB=(B)TAB证毕!
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
1.直接看A*A的对角元即可.2.B=(E-A)^{-1}即得.3.方法同上.4.A=(B+E)^{-1}-E,故特征值都非零.5.直接看分量.6.利用A*adj(A)=|A|*E即得.7.(E+BA
如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。
条件表明A'=AB'=BA'B'表示转置故(A+B)'=A'+B'=A+B(A-2B)=A'-2B'=A-2B两式表明A+B,A-2B也都是对称矩阵
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵
1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'