设a1,a2,a3均为三维列向量,记矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:55:38
(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)=(a1,a2,a3)P其中P=111123149即有B=AP所以|A|=|A||P|=|P|=(2-1)(3-1)(3-2)=2.注:
改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值
由已知A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(2a1+a2+a3,2a2,-a2+a1)=(a1,a2,a3)B其中B=20112-1100由于a1,a2,a3线性无关,所以(a1,a2
由Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3可以知道,A(a1,a2,a3)=(a1,a2,a3)(1,0,02,2,33,3,-4)显然A,(a1,a2,a3)以及
A(a1,a2,a3)=(a1,a2,a3)KK=20044666-8因为a1,a2,a3线性无关所以A与K相似所以|A|=|K|=2*(-32-36)=-136.
A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=
A(a1,a2,a3)=(a1+a2,-a1+2a2-a3,a2-3a3)=(a1,a2,a3)KK=1-101210-1-3等式两边取行列式,由于|a1,a2,a3|≠0,所以|A|=|K|=-8.
(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
|4a1,2a1-3a2,a3|=|4a1,2a1,a3|-|4a1,3a2,a3|【第一个行列式有两行成比例,所以行列式为0】=0-|4a1,3a2,a3|=-4×3|a1,a2,a3|=-12|A
B=(a1+a2+a3,a1+2a2,a1+3a2+a3)=(a1,a2,a3)K=AKK=111123101所以|B|=|A||K|即有2=2|A|所以|A|=1.
四个向量都是三维列向量,所以四个向量组成的向量组a1,a2,a1,a2一定线性相关,所以存在不全为零的实数x1,x2,y1,y2,使得x1a1+x2a2-y1b1-y2b2=0,所以x1a1+x2a2
解:(1)因为==+2+=1-2*1+2=1所以γ是一个单位向量.(2)因为β与γ正交,所以=0.而==+=1+k=1+k(+)=1+k(2-1)=1+k所以k=-1.
设B=A2+.+A2007,C=A1+B+A2008则:M=(A1+B+A2008)(B+A2008+A2009)=C(B+A2008+A2009)N=(A1+B+A2008+A2009)B=B(C+
推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2
|B|=|2a1+a3,a3,a2|第1列减第2列=|2a1,a3,a2|第1列提出2,第2,3列交换=-2|a1,a2,a3|=-2|A|=-6
C=(a1+2a2,2a2+3a4,a4+3a1)=(a1,a2,a4)KK=103220031所以40=|C|=|a1,a2,a4||K|=20|a1,a2,a4|所以|a1,a2,a4|=2.|A
|a3,a2,a1-2a2|c3+2c2=|a3,a2,a1|c1c3=-|a1,a2,a3|=-1.
|3a1+a22a2a3|=|3a12a2a3|+|a22a2a3|=|3a12a2a3|+0=3^3*2^3|a1a2a3|=216|a1a2a3|=216d