设a1,a2,a3均为三维列向量,记矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:55:38
设a1,a2,a3均为三维列向量,记矩阵
设a1,a2,a3均为3维列向量,A=(a1,a2,a3).B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+

(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)=(a1,a2,a3)P其中P=111123149即有B=AP所以|A|=|A||P|=|P|=(2-1)(3-1)(3-2)=2.注:

设A是3阶矩阵,a1a2a3是三维线性无关的列向量,且Aa1=4a1-4a2+3a3 Aa2=负6a1-a2+a3 Aa

改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,且满足Aa1=2a1+a2+a3,Aa2=2a2,Aa3=-a2+a

由已知A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(2a1+a2+a3,2a2,-a2+a1)=(a1,a2,a3)B其中B=20112-1100由于a1,a2,a3线性无关,所以(a1,a2

设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3

由Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3可以知道,A(a1,a2,a3)=(a1,a2,a3)(1,0,02,2,33,3,-4)显然A,(a1,a2,a3)以及

设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=2a1+4a2+6a3,Aa2=4a2+6a3,Aa3=

A(a1,a2,a3)=(a1,a2,a3)KK=20044666-8因为a1,a2,a3线性无关所以A与K相似所以|A|=|K|=2*(-32-36)=-136.

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,

A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=

设A是三阶矩阵,a1,a2,a3,都是三维向量,满足|a1,a2,a3|不等于0.已知Aa1=a1+a2,Aa2=-a1

A(a1,a2,a3)=(a1+a2,-a1+2a2-a3,a2-3a3)=(a1,a2,a3)KK=1-101210-1-3等式两边取行列式,由于|a1,a2,a3|≠0,所以|A|=|K|=-8.

设a1,a2,a3为正数,求证a1*a2/a3+a2*a3/a1+a3*a1/a2>=a1+a2+a3

(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可

设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3

令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a

设A=[a1,a2,a3],其中ai(i=1,2,3)是三维列向量,若|A|=1,则|[4a1,2a1-3a2,a3]=

|4a1,2a1-3a2,a3|=|4a1,2a1,a3|-|4a1,3a2,a3|【第一个行列式有两行成比例,所以行列式为0】=0-|4a1,3a2,a3|=-4×3|a1,a2,a3|=-12|A

设3阶矩阵A=(a1,a2,a3),其中a1,a2,a3均为3维列向量,且|B|=2,矩阵B=(a1+a2+a3,a1+

B=(a1+a2+a3,a1+2a2,a1+3a2+a3)=(a1,a2,a3)K=AKK=111123101所以|B|=|A||K|即有2=2|A|所以|A|=1.

设a1,a2,b1,b2均为三维列向量,且a1,a2线性无关,b1,b2线性无关,证明:存在非零向量m,使得m即可由a1

四个向量都是三维列向量,所以四个向量组成的向量组a1,a2,a1,a2一定线性相关,所以存在不全为零的实数x1,x2,y1,y2,使得x1a1+x2a2-y1b1-y2b2=0,所以x1a1+x2a2

设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.

解:(1)因为==+2+=1-2*1+2=1所以γ是一个单位向量.(2)因为β与γ正交,所以=0.而==+=1+k=1+k(+)=1+k(2-1)=1+k所以k=-1.

已知A1,A2,A3,.,A2009均为正整数,设M=(A1+A2+.+A2008)(A2+A3+.+A2009)

设B=A2+.+A2007,C=A1+B+A2008则:M=(A1+B+A2008)(B+A2008+A2009)=C(B+A2008+A2009)N=(A1+B+A2008+A2009)B=B(C+

设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a

推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2

设A3的列向量组为a1,a2,a3,且|A|=3,B=(2a1+a3,a3,a2),则|B|=?

|B|=|2a1+a3,a3,a2|第1列减第2列=|2a1,a3,a2|第1列提出2,第2,3列交换=-2|a1,a2,a3|=-2|A|=-6

a1a2a3a4三维列向量A=(a1,a2,2a3-a4+a2),B=(a3,a2,a1),C=(a1+2a2,2a2+

C=(a1+2a2,2a2+3a4,a4+3a1)=(a1,a2,a4)KK=103220031所以40=|C|=|a1,a2,a4||K|=20|a1,a2,a4|所以|a1,a2,a4|=2.|A

设a1,a2,a3为3维列向量,行列式|a1 a2 a3|=d,则|3a1+a2 2a2 a3|=

|3a1+a22a2a3|=|3a12a2a3|+|a22a2a3|=|3a12a2a3|+0=3^3*2^3|a1a2a3|=216|a1a2a3|=216d