设ABC均为n阶矩阵,且AB=O,AC C=O

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:40:44
设ABC均为n阶矩阵,且AB=O,AC C=O
设A、B均为n阶正交矩阵,且|AB|=-1,则|A^(-1)B^T|=?

A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

【急】设A为n阶矩阵,证明A的行列式=0,且存在非零n阶矩阵B时,AB=0

行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

n阶矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A*

利用等式AA*=A*A=|A|E.A[2A^(-1)B*+A*B^(-1)]B=2AA^(-1)B*B+AA*B^(-1)B=2|B|E+|A|E=2(|A|+|B|)E=2E.等式两边取行列式得|A

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

n阶段矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A

你做的对!也可用A*=|A|A^-1丨2A^(-1)B*+A*B^(-1)丨=|2|B|A^-1B^-1+|A|A^-1B^-1丨=|-A^-1B^-1|=(-1)^n(-1/6).A[2A^(-1)

设A是m*n矩阵,C和B均为n*s矩阵,且AB=AC,B不等于C,证明:r(A)

因为AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解又因为B≠C所以B-C≠0所以Ax=0有非零解所以r(A)

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(

我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设ABC分别为m*n,n*s,s*m矩阵,且r(CA)=r(A),证明r(CAB)=r(AB)

证明:显然,Ax=0的解是CAx=0的解由已知r(A)=r(CA)所以Ax=0与CAx=0同解.又显然ABx=0的解是CABx=0的解反之.设x1是CABx=0的解则CABx1=0所以Bx1是CAx=

线性代数 设AB都是n阶对称矩阵,且AB也是对称矩阵,证明:AB=BA

其实这是个充分必要的由已知,A'=A,B'=B所以有AB是对称矩阵(AB)'=ABB'A'=ABBA=AB有问题请消息我或追问

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆