设AB都是3阶方阵,且A=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:21:21
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
|AB|=|A||B|=2*3=6.
n阶矩阵乘积的秩有不等式r(AB)≥r(A)+r(B)-nAB=0,即有r(AB)=0,代入即得.还有一种想法,B的列向量都是线性方程组AX=0的解.于是AX=0解空间的维数n-r(A)应该≥B的列秩
A可逆,A^(-1)ABA=BA,因此AB与BA相似
C=AB,r(C)=r(AB)
B的每个列向量都是齐次方程AX=0的解.当B为零矩阵时,AX=0只有零解,所以r(A)=n,B为零矩阵所以r(B)=0此时r(A)+r(B)=n当B为非零矩阵时,AX=0有非零解,所以r(A)
AB=0,则r(A)+r(B)再问:你好我想知道为什么有“A,B都是非零矩阵,所以r(A),r(B)都小于n"再答:如果r(A),r(B)有一个是N,那么另外一个不就是0了,与A,B都是非零矩阵矛盾嘛
主要利用矩阵的秩的不等式如果AB=O矩阵那么有r(A)+r(B)=1,因为只有O矩阵的秩才等于0,否则均大于0结合上面的不等式考虑,有r(B)只能是1或者2,不可能是0或者3那么B的三阶子式,也就是其
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
由2A-B-AB=E及A^2=A得A+A^2-AB-B=E,所以(A-B)(A+E)=E,由此知,A-B可逆,且其逆为A+E.
因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的
还可能等于-1.再答:可以收藏我哦
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
证明:由于矩阵A可逆,因此A-1存在,故A-1(AB)A=(A-1A)BA=BA,故AB与BA相似
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB