设AB都是n阶方阵,A有n个互异特征值,B和A有相同的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:58:40
设AB都是n阶方阵,A有n个互异特征值,B和A有相同的特征值
设n阶方阵A与B中有一个是非奇异的,求证矩阵AB相似于BA

n阶方阵A与B中有一个是非奇异的,不妨设A非奇异,则BA=A^(-1)ABA可见AB相似于BA

设A与B都是n阶方阵.证明:如果AB=O,那么 秩A+秩B≤n.

n阶矩阵乘积的秩有不等式r(AB)≥r(A)+r(B)-nAB=0,即有r(AB)=0,代入即得.还有一种想法,B的列向量都是线性方程组AX=0的解.于是AX=0解空间的维数n-r(A)应该≥B的列秩

设A,B都是n阶方阵,且|A|不等于0,证明AB与BA相似.

A可逆,A^(-1)ABA=BA,因此AB与BA相似

线性代数设A`B都是n阶方阵,证明若AB=O则r(A)+r(B)

B的每个列向量都是齐次方程AX=0的解.当B为零矩阵时,AX=0只有零解,所以r(A)=n,B为零矩阵所以r(B)=0此时r(A)+r(B)=n当B为非零矩阵时,AX=0有非零解,所以r(A)

设A、B都是n阶非零方阵,且AB=0,则A、B的秩()

AB=0,则r(A)+r(B)再问:你好我想知道为什么有“A,B都是非零矩阵,所以r(A),r(B)都小于n"再答:如果r(A),r(B)有一个是N,那么另外一个不就是0了,与A,B都是非零矩阵矛盾嘛

线性代数!设A B都是n阶正交方阵,证明 AT A-1 AB也是正交方阵.书上的定理,求证明过程.

只要证明(ATA-1AB)T(ATA-1AB)=单位阵就行用转置的性质(AB)T=BTAT和ATT=A的到(ATA-1AB)T=BTATA-1TA,用它乘上ATA-1AB用条件A,B都是n阶正交阵所以

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

求线性代数特征值 1.设A,B都是n阶方阵,且B可逆,则B-1A与AB-1有相同的特征值

1.因为B^-1A=B^-1(AB^-1)B所以B^-1A与AB^-1相似所以它们有相同的特征值.2.设a为A的特征值则a^2-1是A^2-E的特征值因为A^2-E=0,零矩阵的特征值只能是0所以a^

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

设A,B都是n阶方阵,B且可逆,则B-1A与AB-1有相同的特征值.

B(B^{-1}A)B^{-1}=AB^{-1},则B^{-1}A与AB^{-1}相似,从而有相同的特征值.

设A,B都是n阶方阵,且|A|≠0,证明AB与BA相似.

证明:由于矩阵A可逆,因此A-1存在,故A-1(AB)A=(A-1A)BA=BA,故AB与BA相似

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

一道高等代数的问题,设A与B都是n阶方阵.证明:如果AB = O,那么秩A + 秩B ≤ n .

因为AB=0,所以B的每一列都是线性方程组AX=0的解.而根据线性方程组理论,AX=0的基础解系中线性无关的解的个数(或者说解空间的维数)≤n-r(A).而B的列向量组是解空间的一部分,所以B的列向量

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

线性代数与解析几何设N阶方阵A的N个特征值互异,B是N阶可逆阵.证明AB=BA(充分必要条件)存在可逆阵P使得P逆AP和

由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们