设arctan(x+3)/(x-3)=,求系数C3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:13:34
设x=tany,则y=arctanx-x=tan-y,所以,-y=arctan-x得,arctan(-x)=-arctanx原理就是tanx是奇函数,arctan也是奇函数这个记住就行,也不是很难推有
给你个思路吧,这个不好打1)由F(无穷,无穷)=1,F(负无穷,负无穷)=0,F(负无穷,y)=0,F(x,负无穷)=0,可以解出abc2)对F(x,y)求x,y的混合偏导数,得出的结果就是f(x,y
对于极限的证明,高中是不作要求的.大学的证明过程如下:证明:存在一个足够大的正实数G>0,对于任意的x>G,有tan|arctan(x)-pi/2|=cot(arctanx)=1/tan[arctan
y=f[(1-4/(3x+2)],y`={arctan[(1-4/(3x+2)]^2}*[12/(3x+2)^2当x=0,时,y=(arctan1)*(12/4)=3/4π
symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y
y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],利用复合函数求导的链锁规则,有y'=1/(1+(a/x)^2)*(-a/x^2)+1/2[1/(x-a)]-1/(x+a)]=-a
两边同时对x求导,得(2x+2yy')/(x²+y²)=1/(1+y²/x²)·(xy'-y)/x²(2x+2yy')/(x²+y²
z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1
x→0时,由于arctanx等价与x,所以,原式=lim(x-sinx)/x³用洛毕达有原式=lim(1-cosx)/3x²=limsinx/6x=1/6
鐢∕APLE瑙Ⅻbr/>>fsolve(arctan(x/12)-arctan(x/10)-arctan(x/20)=-40/180*Pi);13.96972563鐢∕ATLAB瑙Ⅻbr/>濂介夯鐑︾
差不多,但是有小区别.arctan(x/y)的范围是(-π/2,π/2)而arctan(x,y)的范围是(-π,π]http://www.cplusplus.com/reference/clibrar
sin(arctanx)=x/(根号下1+x²);cos(arctanx)=1/(根号下1+x²).
y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2
设а=arctanx,则tana=x,然后根据1+tan^2a=1/cos^2a,算出cosa,再根据sin^2a+cos^2a=1,算出sina
tan(arctanx+arctanp)=[tanarctanx+tanarctanp]/[1-(tanarctanx)(tanarctanp)]=(x+p)/(1-xp)这就是公式.
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(arctan(1-x)+arctan(1+x))=(1-x+1+x)/(1-(1-x)(1+x))=2/x^2arctan(1
应该是说:tan[-arctan(-x)]=tan[-π+arctanx]等于再问:不加tan就不对了是么?再答:不加不对,
分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]
F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)