设A^2 2A-2E=0.则(A-2E)^(-1)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:28:19
设A^2 2A-2E=0.则(A-2E)^(-1)=
设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

设A为n阶矩阵,|E-A|≠0,证明:(E+A)(E-A)*=(E-A)*(E+A)

由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设A为3阶矩阵,且A+E,A+2E,A-3E均为奇异阵,则|A*+4E|=?

可利用特征值如图得出答案是-12.经济数学团队帮你解答,请及时采纳.谢谢!

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

22.设方阵A^3满足A^3-A^2+2A-E=0,证明:A及A-E均可逆.

A^3-A^2+2A=EA(A^2-A+2)=E所以A可逆A^3-A^2+2A-2E=-EA^2(A-E)+2(A-E)=-E(A^2+2)(A-E)=-E(-A^2-2)(A-E)=E所以A-E可逆

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

线性代数,设A^2+2A+2E=0,求A-E的逆

由A²+2A+2E=0得A²+2A+2E-5E=-5EA²+2A-3E=-5E(A-E)(A+3E)=-5E即(A-E)[-(A+3E)/5]=E∴A-E的逆矩阵为-(A

设A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,则|A^2-2A+3E|=

因为A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,所以A的特征值为1,-1,-3.从而A^2-2A+3E的特征值为2,6,18,进而|A^2-2A+3E|=2*6*18=216.再问:A^

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

.线性代数逆矩阵运算,设A^2+A-5E=0 ,则 (A+2E)^-1 = 求过程!

yajun宝贝,像这种题,主要是有等式右边构造出一个E来,然后在左边分解就可以了.于是有:A^2+A-2E=3E,(A+2E)*(A-E)=3E,于是(A+2E)^-1=1/3(A-E)

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?

由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.

.设e< a

设f(x)=(lnx)^2一阶导数是f'(x)=2(lnx)/x二阶导数是f''(x)=2(1-lnx)/x^2由微分中值定理:存在ξ,其中ae时是减函数,由于e(4/e^2)(b-a)

线性代数题!要详解 设A是3阶实方阵,A+2E,A-E,2A-E均不可逆,则行列式A^2+E=

因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5